• Title/Summary/Keyword: 눈동자 응시 방향

Search Result 6, Processing Time 0.021 seconds

A Study on Eye Gaze Tracking for View Controlling in 3D First Person Shooting Game (3차원 1인칭 슈팅 게임에서의 화면 조정을 위한 시선 위치 추적 연구)

  • Lee, Eui-Chul;Park, Kang-Ryoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.873-876
    • /
    • 2005
  • 본 논문에서는 HMD(Head Mounted Display) 하단에 눈동자의 움직임 영상을 취득할 수 있는 USB 카메라를 부착한 후, 3차원 1인칭 슈팅(First Person Shooting) 게임에서 게임 캐릭터의 시선방향을 눈동자 움직임에 의해 조작하는 방법을 제안한다. 시스템은 입력 영상으로부터 눈동자의 중심 위치를 실시간 영상 처리 방법으로 추출하고, 눈동자의 위치 정보와 모니터상의 응시 지점사이의 기하학적인 연관관계를 결정하는 캘리브레이션을 진행하며, 캘리브레이션 정보를 기반으로 모니터 상의 최종적인 응시 위치를 결정하여 이 정보에 의해 게임상의 3차원 뷰(view) 방향을 조정하는 부분으로 구성되어 있다. 실험 결과 본 논문의 방법에 의해 손이 불편한 사용자에게 게임을 즐길 수 있는 기회를 제공하고, 게임 캐릭터와 게임 사용자의 시선 방향을 일치시킴으로서 게임의 흥미와 몰입감을 증가시킬 수 있는 결과를 얻음을 수 있었다.

  • PDF

3D First Person Shooting Game by Using Eye Gaze Tracking (눈동자 시선 추적에 의한 3차원 1인칭 슈팅 게임)

  • Lee, Eui-Chul;Park, Kang-Ryoung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.465-472
    • /
    • 2005
  • In this paper, we propose the method of manipulating the gaze direction of 3D FPS game's character by using eye gaze detection from the successive images captured by USB camera, which is attached beneath HMB. The proposed method is composed of 3 parts. At first, we detect user's pupil center by real-time image processing algorithm from the successive input images. In the second part of calibration, when the user gaze on the monitor plane, the geometric relationship between the gazing position of monitor and the detected position of pupil center is determined. In the last part, the final gaze position on the HMD monitor is tracked and the 3D view in game is controlled by the gaze position based on the calibration information. Experimental results show that our method can be used for the handicapped game player who cannot use his(or her) hand. Also, it can Increase the interest and the immersion by synchronizing the gaze direction of game player and the view direction of game character.

3D View Controlling by Using Eye Gaze Tracking in First Person Shooting Game (1 인칭 슈팅 게임에서 눈동자 시선 추적에 의한 3차원 화면 조정)

  • Lee, Eui-Chul;Cho, Yong-Joo;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1293-1305
    • /
    • 2005
  • In this paper, we propose the method of manipulating the gaze direction of 3D FPS game's character by using eye gaze detection from the successive images captured by USB camera, which is attached beneath HMD. The proposed method is composed of 3 parts. In the first fart, we detect user's pupil center by real-time image processing algorithm from the successive input images. In the second part of calibration, the geometric relationship is determined between the monitor gazing position and the detected eye position gazing at the monitor position. In the last fart, the final gaze position on the HMB monitor is tracked and the 3D view in game is control]ed by the gaze position based on the calibration information. Experimental results show that our method can be used for the handicapped game player who cannot use his (or her) hand. Also, it can increase the interest and immersion by synchronizing the gaze direction of game player and that of game character.

  • PDF

Using POSTIT Eye Gaze Tracking in Real-time (POSTIT정보 이용한 실시간 눈동자 시선 추적)

  • Kim, Mi-Kyung;Choi, Yeon-Seok;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.750-753
    • /
    • 2012
  • A method detecting the position of eyes and tracking a gaze point of eyes in realtime using POSIT is suggested in this paper. This algorithm find out a candidate area of eyes using topological characteristics of eyes and then decides the center of eyes using physical characteristics of eyes. To find the eyes, a nose and a mouth are used for POSIT. The experimental results show that proposed method effectively performed detection of eyes in facial image in FERET databases and gave high performance when used for tracking a gaze point of eyes.

  • PDF

Compensation for Fast Head Movements on Non-intrusive Eye Gaze Tracking System Using Kalman Filter (Kalman filter를 이용한 비접촉식 응시점 추정 시스템에서의 빠른 머리 이동의 보정)

  • Kim, Soo-Chan;Yoo, Jae-Ha;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.35-41
    • /
    • 2007
  • We proposed an eye gaze tracking system under natural head movements. The system consists of one CCD(charge-coupled device) camera and two front-surface mirrors. The mirrors rotate to follow head movements in order to keep the eye within the view of the camera. However, the mirror controller cannot guarantee the fast head movements, because the frame rate is generally 30Hz. To overcome this problem, we applied Kalman filter to estimate next eye position from the current eye image. In the results, our system allowed the subjects head to move 60cm horizontally and 40cm vertically, with the head movement speed about 55cm/sec and 45cm/sec, respectively. And spatial gate resolutions were about 4.5 degree and 5.0 degree, respectively, and the gaze estimation accuracy was 92% under natural head movements.

An Implementation of Gaze Recognition System Based on SVM (SVM 기반의 시선 인식 시스템의 구현)

  • Lee, Kue-Bum;Kim, Dong-Ju;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The researches about gaze recognition which current user gazes and finds the location have increasingly developed to have many application. The gaze recognition of existence all about researches have got problems because of using equipment that Infrared(IR) LED, IR camera and head-mounted of high price. This study propose and implement the gaze recognition system based on SVM using a single PC Web camera. The proposed system that divide the gaze location of 36 per 9 and 4 to recognize gaze location of 4 direction and 9 direction recognize user's gaze. Also, the proposed system had apply on image filtering method using difference image entropy to improve performance of gaze recognition. The propose system was implements experiments on the comparison of proposed difference image entropy gaze recognition system, gaze recognition system using eye corner and eye's center and gaze recognition system based on PCA to evaluate performance of proposed system. The experimental results, recognition rate of 4 direction was 94.42% and 9 direction was 81.33% for the gaze recognition system based on proposed SVM. 4 direction was 95.37% and 9 direction was 82.25%, when image filtering method using difference image entropy implemented. The experimental results proved the high performance better than existed gaze recognition system.