• Title/Summary/Keyword: 누적 피로사용계수

Search Result 12, Processing Time 0.021 seconds

Surface damage accumulation in alumina under the repeated Inclined contact forces (수직-수평 반복하중을 받는 알루미나 표면에서의 피로손상 누적)

  • 이권용;최성종
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.61-66
    • /
    • 1999
  • 반복 응력 상태 아래서 알루미나 세라믹의 피로 표면손상 누적현상이 분석되었다. 연속 미끄럼 접촉 시에 발생하는 응력 상태를 재현하기 위해서 동시에 작용하는 수직-수평 반복 압축하중 기법이 사용되었다. 알루미나 구와 평판의 접촉면에서 알루미나 미세 결정의 피로 파손에 의한 마모 입자 형성 기구가 관찰되었고, 반복하중의 횟수와 수직-수평 하중비가 커질수록 마모량은 증가하였다. 반복 접촉하중에 의한 표면손상 누적이 접촉 수직 변위 측정으로 정량화 되었다. 두 접촉 구조물의 강성 (하중-변위 선도의 기울기) 변화가 두 재질의 탄성계수의 변화로 표현되었다.

  • PDF

Study on Fatigue Damage Model and Multi-Stress Level Fatigue Life Prediction of Composite Materials (II) -Fatigue Damage Model using Reference Modulus- (복합재료의 피로손상 모형 및 다응력 수위 피로수명 예측 연구 (II) - 참고계수를 이용한 피로 손상 모형 -)

  • 이창수;황운봉;한경섭
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • During fatigue loading of composite materials, damage accumulation can be monitored by measuring their material properties. In this study, fatigue modulus is used as the damage index. Fatigue life of composite materials may be predicted analytically using damage models which are based on fatigue modulus and resultant strain. Damage models are propesed as funtions of applied stress level, number of fatigue cycle and fatigue life. The predicted life was comparable to the experimental result obtained using E-glass fiber reinforced epoxy resin materials and pultruded glass fiber reinforce polyester composites under two-stress level fatigue loading.

  • PDF

Remaining Fatigue Life Evaluation of Steel Railroad Bridge (강철도교의 잔존피로수명 평가)

  • Kim, Sang Hyo;Lee, Sang Woo;Mha, Ho Seong;Kim, Jong Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.329-338
    • /
    • 1999
  • A systematic procedure to evaluate fatigue damages and to predict remaining fatigue lives is introduced for a steel railway bridge. Fatigue damages are evaluated by using the currently available fatigue damage theory. Fatigue lives with the condition of fatigue crack initiation are estimated by the probabilistic approach based on the reliability theory as well as the simplified procedure. A equivalent deterministic procedure is also suggested to assess the remaining fatigue life under various traffic conditions. Numerical simulations are used to assess dynamic stress histories with correction factors. Loading models are obtained from the passenger volume data. Train coincidences are also considered. Based on the results, the fatigue life is found to be underestimated by without considering the coincidence of trains on the bridge. The simplified method proposed in this study are found to yield approximately the same results as the systematic procedure.

  • PDF

Current Status on the Development and Application of Fatigue Monitoring System for Nuclear Power Plants (원전 피로 감시 시스템 개발 및 적용 현황)

  • Boo, Myung Hwan;Lee, Kyoung Soo;Oh, Chang Kyun;Kim, Hyun Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Metal fatigue is an important aging mechanism that material characteristics can be deteriorated when even a small load is applied repeatedly. An accurate fatigue evaluation is very important for component structural integrity and reliability. In the design stage of a nuclear power plant, the fatigue evaluations of the Class 1 components have to be performed. However, operating experience shows that the design evaluation can be very conservative due to conservatism in the transient severity and number of occurrence. Therefore, the fatigue monitoring system has been considered as a practical mean to ensure safe operation of the nuclear power plants. The fatigue monitoring system can quantify accumulated fatigue damage up to date for various plant conditions. The purpose of this paper is to describe the fatigue monitoring procedure and to introduce the fatigue monitoring program developed by the authors. The feasibility of the fatigue monitoring program is demonstrated by comparing with the actual operating data and finite element analysis results.

Improvement of Fatigue Model of Concrete Pavement Slabs Using Environmental Loading (환경하중을 이용하는 콘크리트 포장 슬래브 피로모형의 개선)

  • Park, Joo-Young;Lim, Jin-Sun;Kim, Sang-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.103-115
    • /
    • 2011
  • Concrete slab curls and warps due to the uneven distribution of temperature and moisture and as the result, internal stress develops within the slab. Therefore, environmental loads must be considered in addition to the traffic loads to predict the lifespan of the concrete pavement more accurately. The strength of the concrete slab is gradually decreases to a certain level at which fatigue cracking is generated by the repetitive traffic and environmental loadings. In this study, a new fatigue regression model was developed based on the results from previously performed studies. To verify the model, another laboratory flexural fatigue test program which was not used in the model development, was conducted and compared with the predictions of other existing models. Each fatigue model was applied to analysis logic of cumulative fatigue damage of concrete pavement developed in the study. The sensitivity of cumulative fatigue damage calculated by each model was analyzed for the design factors such as slab thickness, joint spacing, complex modulus of subgrade reaction and the load transfer at joints. As the result, the model developed in this study could reflect environmental loading more reasonably by improving other existing models which consider R, minimum/maximum stress ratio.

Development of Fatigue Model for Asphalt Black Base by Accelerated Pavement Testing (포장가속시험을 이용한 아스팔트 안정처리층의 피로모형 개발)

  • Yeo, In-Soo;Suh, Young-Chan;Mun, Sung-Ho
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2007
  • This thesis develops a fatigue model for the asphalt black base using the APT(Accelerated Pavement Testing) and analyzes the correlation of the APT analysis result with results of previous laboratory tests. For the APT testing, aggregate of the maximum grain size of 25mm(BB-3) was used as the material for the asphalt black base. The result of the APT revealed that the variable of the fatigue model, i.e. the maximum tensile stress on the bottom part of the pavement, increased as the number of loading increased while the modulus of elasticity for the pavement layer decreased gradually. The tensile strain was obtained from a strain gauge, and it was used to derive the values of $k_1=1.29{\times}10^{-6}$ and $k_2=3.02$ from the basic equation of the asphalt fatigue model, $N_f=k_1(\frac{1}{\epsilon})^{k_2}$. The fatigue life predicted from the asphalt fatigue model was greater than that obtained from laboratory experiments, given the same tensile strain. Additionally, a theory to estimate the remaining life of the pavement was developed using FWD, a non-destructive experiment.

  • PDF

Assessment of Fatigue Life of Out-Of-Plane Gusset Welded Joints using 3D Crack Propagation Analysis (3차원 피로균열 진전해석을 통한 면외거셋 용접이음의 피로수명 평가)

  • Jeong, Young-Soo;Kainuma, Shigenobu;Ahn, Jin-Hee;Lee, Wong-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • The estimation of the fatigue design life for large welded structures is usually performed using the liner cumulative damage method such as Palmgren-Miner rule or the equivalent damage method. When a fatigue crack is detected in a welded steel structure, the residual service life has to be estimated base on S-N curve method and liner elastic fracture mechanics. In this study, to examine the 3D fatigue crack behavior and estimate the fatigue life of out-of-plane gusset fillet welded joint, the fatigue tests were carried out on the model specimens. Investigations of three-dimensional fatigue crack propagation on gusset welded joint was used the finite element analysis of FEMAP with NX NASTRAN and FRANC3D. Fatigue crack growth analysis was carried out to demonstrate the effects of aspect ratio, initial crack length and stress ratio on out-of-plane gusset welded joints. In addition, the crack behaviors of fatigue tests were compared with those of the 3D crack propagation analysis in terms of changes in crack length and aspect ratio. From this analysis result, SIFs behaviors and crack propagation rate of gusset welded joint were shown to be similar fatigue test results and the fatigue life can also be predicted.

Environmental Fatigue Evaluation of APR1000 Reactor Vessel (APR1000 원자로용기의 환경피로 평가)

  • Kim, Jong Min;Kim, Yong Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • APR1000(Advanced Power Reactor 1000) was developed to export 1000MW nuclear power plants by adding ADFs(Advanced Design Features) including 60 years design life, local frequency control operation, 0.3g SSE, etc. to OPR1000(Optimized Power Reactor 1000). In this paper, environmental fatigue analyses for the reactor vessel in APR1000 have been performed as per Reg. Guide 1.207. Outlet nozzle, which has a relatively high cumulative usage factor in the reactor vessel was evaluated and a structural integrity is maintained under the reactor coolant environment.

Stress Classification Using Artificial Neural Networks and Fatigue Life Assessment (인공신경망을 이용한 계측응력 분류 및 피로수명 평가)

  • Jung Sung-Wook;Chang Yoon-Suk;Choi Jae-Boons;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.520-527
    • /
    • 2006
  • The design of major industrial facilities for the prevention of fatigue failure is customarily done by defining a set of transients and performing a calculation of cumulative usage factor. However, sometimes, the inherent conservatism or lack of details as well as unanticipated transients in old plant may cause maintenance problems. Even though several famous on-line monitoring and diagnosis systems have been developed world-widely, in this paper, a new system fur fatigue monitoring and life evaluation of crane is proposed to reduce customizing effort and purchasing cost. With regard to the system, at first, comprehensive operating transient data has been acquired at critical locations of crane. The real-time data were classified, by using adaptive resonance theory that is one of typical artificial neural network, into representative stress groups. Then the each classified stress pattern was mapped to calculated cumulative usage factor in accordance with ASME procedure. Thereby, promising results were obtained fur the crane and it is believed that the developed system can be applicable to other major facilities extensively.

Environmental Fatigue Evaluation of Top-Mounted In-Core Instrumentation Nozzle (상부 탑재형 노내계측기 노즐의 환경피로평가)

  • Yoon, Hyo-Sub;Kim, Jong-Min;Maeng, Cheol-Soo;Kim, Gee-Seok;Kim, Hyun-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.245-252
    • /
    • 2016
  • The development of Top-Mounted In-Core Instrumentation(TM-ICI) is an ongoing project to reduce the risk due to severe accidents by inserting the instrumentation into a reactor closure head instead of a reactor bottom head. As part of this project, environmental fatigue analyses for TM-ICI nozzle have been performed using two methods of NUREG/CR-6909 and Code Case N-761. TM-ICI nozzle is subjected to transient loads for level A, level B and test conditions that should be evaluated for a fatigue analysis. It is found that a cumulative usage factor considering reactor coolant environment for TM-ICI nozzle is evaluated as less than 1, which is ASME Code allowable criteria of a fatigue analysis.