• Title/Summary/Keyword: 누설량 해석

Search Result 57, Processing Time 0.03 seconds

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 실의 누설량 및 동특성계수 해석)

  • 하태웅;이용복;김창호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.528-534
    • /
    • 2001
  • Basic equations and its solution procedure are derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients are presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Leakage Analysis and Design Modification of the Combination-Type-Staggered-Labyrinth Seal (누설량 저감을 위한 래버린스 실의 설계개선 및 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.43-48
    • /
    • 2007
  • Leakage reduction through annular type labyrinth seals of steam turbine is necessary for enhancing their efficiency. In this study, modified geometry of the original combination-type-staggered-labyrinth seal has been suggested and numerical analysis for leakage prediction has been carried out for the modified-combination-type-staggered-labyrinth seal both based on bulk-flow model and using the CFD code FLUENT. The theoretical analysis based on bulk-flow model yields leakage reduction of the modified combination type staggered labyrinth seal by about 11%. Comparing with the result of Bulk-flow model analysis, the leakage result of CFD analysis shows reasonable agreement within 9.8% error.

Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal (엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

Rotordynamic Analysis of See-through-type Labyrinth Seal Using 3D CFD (3D CFD를 활용한 관통 래버린스 실의 회전체 동역학적 해석)

  • Ha, Tae Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.44-50
    • /
    • 2015
  • Labyrinth seals are commonly used in various kinds of turbomachinery to reduce leakage flow. In the present 3D CFD analysis of see-through-type labyrinth air seal, the methodology of determining leakage and rotordynamic coefficients is suggested with the relative coordinate system for steady-state simulation. The leakage flow and rotordynamic forces predicted by using different solvers and turbulent models of FLUENT are compared with the results of the existing bulk-flow analysis code LABYSEAL.FOR and experiment. The present CFD result of direct stiffness(K) shows only improvement in prediction. The results of leakage and rotordynamic coefficients as well as computing time are sensitive against the used solver and turbulent model.

Research on MFL PIG Design for the Inspection of Underground Gas Pipeline (지하매설 가스관의 검사를 위한 누설자속탐상 PIG 설계에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.177-186
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects in underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.

Research on MFL PIG Design for caustic and defect the Inspection of Underground Gas Pipeline (지하매설 가스관의 부식 및 결함 탐지를 위한 비파괴 누설 탐상시스템 개발에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.11-20
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects on underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.

  • PDF

An Electromagnetic Force Calculation of the Primary Winding in Power Distribution Transformer (소용량 배전용 변압기 권선의 전자력 계산)

  • Ha, Jung-Woo;Shin, Pan-Seok;Lee, Byung-Sung;Song, Il-Keun;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.164-166
    • /
    • 2006
  • 본 연구에서는 전력계통에서 발생되는 고장 전류에 의해서 변압기의 1차측 코일에 유도되는 전자력의 크기를 유한요소 전자계해석 프로그램(FLUX2D)을 이용하여 해석하였다. 50kVA, 13200/230(V) 단상 변압기의 권선간 전자력계산을 축대칭FEM을 이용하여 각 방향의 전자력을 분석하였다. 누설자속분포, 전류유입시 권선상호간에 작용하는 힘의 변화와 힘의 분포, 변압기 내부권선의 정상시와 고장전류시의 전자계비교를 전자계 해석을 통하여 변압기에 미치는 영향을 해석하였다. 변압기에 대전류가 유입되는 경우의 전자력 분석결과는 변압기의 절연설계 및 단락기계력에 대한 프레임 구조 설계를 위한 자료로 활용된다.

  • PDF

Secondary type selection of a Linear Induction Motor for a Lightweight Train (철도차량구동용 선형유도전동기의 2차측 방식선정)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1042-1043
    • /
    • 2008
  • 본 논문에서는 국내 경전철에 사용되는 선형유도전동기의 성능 분석을 통하여 지상 2차측의 방식을 선정하고자 한다. 일반적으로, 등가회로를 이용한 해석적 방법은 선형전동기의 커다란 공극, 단부효과, 횡방향 효과, 3차원 형상, 회전기에 비해 상대적으로 큰 누설 등으로 인하여 성능을 정확히 예측할 수 없다. 또한, 수치해석적 방법은 고용량의 메모리와 해석시간을 요구한다. 그러나 본 논문에서는 등가회로법과 수치해석법을 혼용하여 좀 더 빠르고 정확한 성능 분석을 수행하였으며 제안된 방법을 통하여 도시철도차량용 선형유도전동기에 적합한 2차측 방식을 선정하였다.

  • PDF

Behavior Analysis of Double Lip Seal with Interference (간섭량에 따른 이중 립 실의 거동 해석)

  • Jung, H.G.;Yoo, J.C.;Park, T.J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1576-1580
    • /
    • 2007
  • Typical lip seals are widely used as sealing mechanism of rotary and reciprocating shaft. Double lip seal has comparatively high stiffness and dynamic radial eccentricity. Usually material of these seals is made of elastomer and nonlinear finite element analysis is required to analyze behaviour of this material because Young's modulus is varied with working load. In this paper, MSC MARC/MENTAT is used for nonlinear analysis of double lip seal with pressure variation and interference. The contact normal force of double lip seal between lip and shaft is analyzed to reduce power loss when shaft rotates.

  • PDF

Numerical Study on Steady and Unsteady Flow Characteristics of Nozzle-Rotor Flow in a Partial Admission Supersonic Axial Turbine with Sweep Angle (스윕 각이 적용된 부분 흡입형 초음속 축류 터빈의 정상, 비정상 공력 특성에 관한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.173-179
    • /
    • 2012
  • Steady and unsteady three-dimensional RANS simulations have been performed on partial admission supersonic axial turbine having backward/forward sweep angles(${\pm}15^{\circ}$) and the results are compared with each other. The objective of this paper is to study the effect of unsteadiness on turbine flow characteristics and performances. The all results indicated that the losses of unsteady simulations were greater than those of steady cases. It was also shown that BSW model give the effect on the reducing of mass flow rates of tip leakage. In unsteady simulation, the increase of t-to-s efficiency at Rotor Out plane was observed more clearly.

  • PDF