• Title/Summary/Keyword: 뇌 T2 강조 영상

Search Result 74, Processing Time 0.029 seconds

MR Findings of Hypoxic Brain Damage: Relation to Time Elapse and Prognosis of Patients (저산소성 뇌손상의 자기공명영상 소견: 유병기간 및 예후와의 연관성)

  • Suh, Kyung-Jin;Kang, Chae-Hoon;Yoo, Dong-Soo;Kim, Sang-Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.1
    • /
    • pp.8-15
    • /
    • 2006
  • Purpose : To describe MR imaging features of hypoxic brain damage in relation to time elapse and prognosis of patients. Materials and methods : We reviewed 19 MR studies of 18 patients with hypoxic brain damage. MR imaging studies were performed between 1 to 20 days after the hypoxic insults (mean 8.6 days). MR images were analyzed with regard to the locations of abnormal signal intensities, the presence of brain edema. And imaging findings were correlated with the time elapse after the insults and the prognosis of patients. Results : On 19 cases of MR studies, abnormal high intensities on T2-weighted images were found in the basal ganglia (15, 78.9%), cerebral cortex (13, 68.4%), white matter (9, 47.4%), thalamus (6, 31.6%), cerebellum (4, 21.1%) and brainstem (1, 5.3%), respectively. Cerebral cortical involvement was typically bilateral and diffuse, but sometimes limited to the parieto-occipital area. The brainstem and cerebellar involvement was rare and in all cases, cerebral cortical lesions accompanied. Most of the white matter lesions were accompanied with cortical and deep gray matter lesions and found in subacute period(>6 days). The cortical high signal intensity lesions on T1-weighted image were found mostly in subacute stage, but in some cases involvement was also found in acute stage ($\leq$ 6 days). The cortical edema is found on 11 cases in acute and subacute stages. In cases of recovered consciousness, cortical involvement and edema on MR were rare. Conclusion : MR findings of hypoxic brain damage were various, but diffuse bilateral involvement of cortex and/or deep gray matter was found in most of the cases. White matter involvement was rarely found in acute stage and usually found in subacute stage. In cases of good pronosis, cortical involvement and edema were rare.

  • PDF

Detection of Tumor in Abnormal Region of Brain MR Images (뇌 MR영상에서 비정상 영역내의 종양 검출)

  • 송미영;조경은;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.160-163
    • /
    • 2002
  • 본 연구는 의료영상 중에 가장 많이 사용하는 의료 영상인 MR영상 중에서 머리 부위의 질병인 뇌종양에 대한 진단을 돕기 위한 연구이다. 뇌 MR영상의 T2강조 영상을 살펴보면, 종양 영역은 명암이 밝게 나타나고 종양 영역의 주변은 어둡게 나타나는 특성을 볼 수 있다. 따라서 제안된 방법은 뇌종양 특성인 명암의 밝기 정보를 기반으로 비정상 영역 내에서 명암 정보가 유사한 영역끼리 그룹화하고 그 중에 가장 밝은 영역을 종양 후보 영역으로 추출한 후 각 후보 영역들 중에서 MBR이 가장 큰 것을 종양으로 검출한다.

  • PDF

T1-weighted FLAIR MR Imaging for the Evaluation of Enhancing Brain Tumors: Comparison with Spin Echo Imaging (조영증강을 보이는 뇌종양의 평가에 있어 T1강조 FLAIR 영상과 스핀에코 MR 영상의 비교)

  • Jeong, Boseul;Choi, Dae Seob;Shin, Hwa Seon;Choi, Hye Young;Park, Mi Jung;Jeon, Kyung Nyeo;Na, Jae Beom;Chung, Sung Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2014
  • Purpose : Spin-echo (SE) technique is most commonly used pulse sequence for T1-weighted MR imaging. T1-weighted fluid-attenuated inversion recovery (T1FLAIR) is a relatively new pulse sequence and it provides higher tissue contrast between the gray matter (GM) and white matter (WM) of the brain than T1-weighted SE (T1SE) sequence. However, there has been controversy for the evaluation of enhancing brain tumors with T1FLAIR compared to T1SE. The purpose of this study was to compare T1FLAIR and T1SE sequences for the evaluation of enhancing intracranial tumors. Materials and Methods: Fifty-two patients with enhancing brain tumors were evaluated with contrast-enhanced (CE) T1SE and T1FLAIR imaging. Eight quantitative criteria were calculated: lesion-to-WM contrast ratio (CR) and contrast-to-noise ratio (CNR), lesion-to-GM CR and CNR, lesion-to-CSF CR and CNR, and WM-to-GM CR and CNR. For qualitative evaluation, two radiologists assessed lesion conspicuity on CE T1SE and T1FLAIR sequences with three-scale: 1, T1SE superior; 2, sequence equal; T1FLAIR superior. Results: Seventy-nine tumors (31 primaries, 48 metastases) were assessed. For quantitative measurement, the T1FLAIR lesion-to-GM, lesion-to-CSF, WM-to-GM CR and CNR values were comparable and statistically superior to those of the T1SE images (p < 0.001 in all). However, lesion-to-WM CR and CNR were similar on both two sequences without statistically significant difference (p = 0.661, 0.662, respectively). For qualitative evaluation, both radiologists assessed that T1FLAIR images were superior to T1SE images for the evaluation of lesion conspicuity. Conclusion: For the evaluation of enhancing intracranial tumors, T1FLAIR sequence was superior or comparable to T1SE sequence.

Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image ($T_2^*$ and FLAIR) Sequence (뇌의 확산강조 영상에서 b-value의 변화에 따른 신호강도, 현성확산계수에 관한 비교 분석 : 확산강조 에코평면영상($T_2^*$ 및 FLAIR)기법 중심으로)

  • Oh, Jong-Kap;Im, Jung-Yeol
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.313-323
    • /
    • 2009
  • Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in $T_2^*$-DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  • PDF

Brain MR Images Grouping By Feature Extraction (뇌 MR 영상의 특징 추출을 이용한 그룹핑)

  • 채정숙;조경은;조형제
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.469-471
    • /
    • 2001
  • 뇌 MR 영상의 분석을 통해 질환을 자동적으로 진단하고 판별을 하기 위한 전처리 단계에서 정상인의 MR 영상 모델과 현재 고려되어지는 대상 영상과의 비교 작업이 요구된다. 이를 통해 보다 정확한 질병에 대한 근거를 제시함으로서 진단이 가능하게 된다. 이러한 비교 작업을 위해 우선적으로 해결해야 하는 것이 현재 대상 영상이 정상인의 MR 영상 시리즈 중 어느 위치의 영상과 일치하는 지를 판별해야 한다. 실질적으로 뇌 MR 시리즈는 영상의 특징에 따라 크게 몇 개의 그룹으로 분류된다. 따라서 본 논문에서는 매핑을 위한 각 구성 요소의 특징을 추출해 자동으로 뇌 영상의 그룹핑을 함으로써 매핑시 고려되어지는 슬라이드의 범위를 좁혀줄 뿐만 아니라 영상의 질에 따라 부분적인 손실이 있다 하더라도 전후 관계 정보를 이용하여 유추가 가능한 방법을 제시한다. 800여개의 T2 MR 강조 영상에 대해서 실험을 행하여 비교적 정확한 그룹핑 결과를 유도할 수 있었음을 확인하였다.

  • PDF

Evaluation of Tendency for Characteristics of MRI Brain T2 Weighted Images according to Changing NEX: MRiLab Simulation Study (자기공명영상장치의 뇌 T2 강조 영상에서 여기횟수 변화에 따른 영상 특성의 경향성 평가: MRiLab Simulation 연구)

  • Kim, Nam Young;Kim, Ju Hui;Lim, Jun;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • Recently, magnetic resonance imaging (MRI), which can acquire images with good contrast without exposure to radiation, has been widely used for diagnosis. However, noise that reduces the accuracy of diagnosis is essentially generated when acquiring the MR images, and by adjusting the parameters, the noise problem can be solved to obtain an image with excellent characteristics. Among the parameters, the number of excitation (NEX) can acquire images with excellent characteristics without additional degradation of image characteristics. In contrast, appropriate NEX setting is required since the scan time increases and motion artifacts may occur. Therefore, in this study, after fixing all MRI parameters through the MRiLab simulation program, we tried to evaluate the tendency of image characteristics according to changing NEX through quantitative evaluation of brain T2 weighted images acquired by adjusting only NEX. To evaluate the noise level and similarity of the acquired image, signal to noise ratio (SNR), contrast to noise ratio (CNR), root mean square error (RMSE) and peak signal to noise ratio (PSNR) were calculated. As a result, both noise level and similarity evaluation factors showed improved values as NEX increased, while the increasing width gradually decreased. In conclusion, we demonstrated that an appropriate NEX setting is important because an excessively large NEX does not affect image characteristics improvement and cause motion artifacts due to a long scan.

T1-weighted MR Imaging of the Neonatal Brain at 3.0 Tesla: Comparison of Spin Echo, Fast Inversion Recovery, and Magnetization-prepared Three Dimensional Gradient Echo Techniques (3T 자기공명영상 장비에서 신생아 뇌의 T1 강조 영상: 스핀에코, 고속 역전회복, 자기화 삼차원 경사에코기법의 비교)

  • Jeong, Jee-Young;Yoo, So-Young;Jang, Kyung-Mi;Eo, Hong;Lee, Jung-Hee;Kim, Ji-Hye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • Purpose: The purpose of this study was to evaluate the usefulness of fast inversion recovery (FIR) and magnetization-prepared three dimensional gradient echo sequence (3D GRE) T1-weighted sequences for neonatal brain imaging compared with spin echo (SE) sequence in a 3T MR unit. Materials and Methods: T1-weighted axial SE, FIR and 3D GRE sequences were evaluated from 3T brain MR imaging in 20 neonates. The signal-to-noise ratio (SNR) of different tissues was measured and contrast-to-noise ratios (CNR) were determined and compared in each of the sequences. Visual analysis was carried out by grading gray-white matter differentiation, myelination, and artifacts. The Wilcoxon signed ranked test was used for evaluation of the statistical significance of CNR differences between the sequences. Results: Among the three sequences, the 3D GRE had the best SNRs. CNRs obtained with FIR and 3D GRE were statistically superior to those obtained with SE; these CNRs were better on the 3D GRE compared to the FIR. Gray to white matter differentiation and myelination were better delineated on the FIR and 3D GRE than the SE. However, motion artifacts were more commonly observed on the 3D GRE and flow-related artifacts of vessels were frequently seen on the FIR. Conclusion: FIR and 3D GRE are valuable alternative T1-weighted sequences to conventional SE imaging of the neonatal brain at 3T providing superior image quality.

  • PDF

뇌기능 자기공명 영상장치를 이용한 인간 미각에 대한 기초 연구

  • 김수현;이영우;최기승;조지연;박청수;이현용;신운재;은충기;권오식
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.26-26
    • /
    • 2003
  • 목적: 본 연구의 목적은 미각자극에 대한 인간 뇌의 활성화 영역을 측정하고 가시화하여 미각의 뇌 활성화 부위에 대한 기초자료를 마련하는데 있다. 대상 및 방법: 5명의 남자 대학생 (평균 24.8세)을 뇌기능 연구의 실험 대상자로 선정하였고, 대상자들은 미각에 이상이 없고 구강수술 경험이 없는 오른손잡이를 대상으로 3번에 걸쳐 EPI 혈액산 소농도의존(blood oxygen level dependent)법을 이용하여 미각자극에 의한 기능적 자기공명영상 실험을 수행하였다. 미각 자극을 위하여 5%의 saline을 사용하였으며 자체적으로 제작한 Stimulator를 사용하여 자극하였다. 자극은 3회의 휴식기간과 2회의 자극기간에 걸쳐 시행하였으며, 각 자극기간은 30초씩 5초 간격으로 이스 당 42개의 영상을 획득했다. Post-processing은 SPM99 (Statistical Parametric Mapping 99, The Wellcome Department of Cognitive Neurology, Oxford 1999)의 correlation법을 사용하여 threshold 0.4∼0.7의 범위에서 통계처리 하였으며, 활성화 영상은 EPI영상과 같은 부위의 T1 강조영상에 overlapping시켰다. 이렇게 얻어진 fMRI 영상으로 활성 영역의 위치를 분석하였다.

  • PDF

Medkum TAu Inversion Recover(MTIR) Sequence for White Matter Suppression in Brain Cortical Lesions (뇌피질 질환에서 뇌백질 신호 억제를 위한 중간시간 반전회복 영상 기법)

  • 정경호;이정민;김종수
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.60-65
    • /
    • 1999
  • Purpose : The purpose of this study was to evaluate the image quality, contrast characteristics, and possible clinical utility of Medium Tau Inversion Recovery(MTIR) sequence with white matter suppression in patients with brain cortical lesion. Materials and methods : Two normal volunteers and twenty-one patients with cortical lesion were scanned with MTIR as well as other MR imaging sequences. Gray-white matter contrast was evaluated objectively using region-of-interest calculations, including percent contrast and contrast-to-noise ratio(CNR). MTIR sequence was visually compared with other sequences in 21 patients with cortical lesion including conspicuity and detection rate. Results : MTIR sequence had the highest present contrast and CNR between the gray matter and white matter. In twenty-one cases of cortical lesion including cortical dysplasia, MTIR sequence improved delineation and conspicuity of lesion, but MTIR sequence could not detect new lesions. Conclusion : The MTIR sequence well delineated the cortical lesions, particularly in including cortical dysplasia. It may be used as an adjunctive imaging sequence in case of poor gray and white matter differentiation with conventional T1-weighted sequences.

  • PDF

Brain MRI Semi-Automatic Segmentation Algorithm for Medical Image Contents (의료영상 콘텐츠의 뇌 MR영상 반자동 영역 분할 알고리즘)

  • Kim Sin-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.45-51
    • /
    • 2005
  • This paper emphasizes on the accomplishment of compensated proton density image and T2 weighted image taken from the shrinkage surface of the Brain. From the images, the Brain's surface shrinkage in the normal image and the surface shrinkage in the abnormal image can be observed. After the separation of white matter, gray matter, and CSF, this algorithm calculates the volume of each of them automatically. Results are subdivided into particular ages and saved in the database to be analyzed and to be processed statistically. Therefore, by using this algorithm the normal and abnormal stages can be detected in the early stages to diagnose. This result easily discernment Alzheimer patient and is useful for Alzheimer diagnostic and early detection.

  • PDF