• Title/Summary/Keyword: 뇌 자기공명영상

Search Result 407, Processing Time 0.024 seconds

Pattern Clustering of Symmetric Regional Cerebral Edema on Brain MRI in Patients with Hepatic Encephalopathy (간성뇌증 환자의 뇌 자기공명영상에서 대칭적인 지역 뇌부종 양상의 군집화)

  • Chun Geun Lim;Hui Joong Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.381-393
    • /
    • 2024
  • Purpose Metabolic abnormalities in hepatic encephalopathy (HE) cause brain edema or demyelinating disease, resulting in symmetric regional cerebral edema (SRCE) on MRI. This study aimed to investigate the usefulness of the clustering analysis of SRCE in predicting the development of brain failure. Materials and Methods MR findings and clinical data of 98 consecutive patients with HE were retrospectively analyzed. The correlation between the 12 regions of SRCE was calculated using the phi (φ) coefficient, and the pattern was classified using hierarchical clustering using the φ2 distance measure and Ward's method. The classified patterns of SRCE were correlated with clinical parameters such as the model for end-stage liver disease (MELD) score and HE grade. Results Significant associations were found between 22 pairs of regions of interest, including the red nucleus and corpus callosum (φ = 0.81, p < 0.001), crus cerebri and red nucleus (φ = 0.72, p < 0.001), and red nucleus and dentate nucleus (φ = 0.66, p < 0.001). After hierarchical clustering, 24 cases were classified into Group I, 35 into Group II, and 39 into Group III. Group III had a higher MELD score (p = 0.04) and HE grade (p = 0.002) than Group I. Conclusion Our study demonstrates that the SRCE patterns can be useful in predicting hepatic preservation and the occurrence of cerebral failure in HE.

Evaluation of Tendency for Characteristics of MRI Brain T2 Weighted Images according to Changing NEX: MRiLab Simulation Study (자기공명영상장치의 뇌 T2 강조 영상에서 여기횟수 변화에 따른 영상 특성의 경향성 평가: MRiLab Simulation 연구)

  • Kim, Nam Young;Kim, Ju Hui;Lim, Jun;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • Recently, magnetic resonance imaging (MRI), which can acquire images with good contrast without exposure to radiation, has been widely used for diagnosis. However, noise that reduces the accuracy of diagnosis is essentially generated when acquiring the MR images, and by adjusting the parameters, the noise problem can be solved to obtain an image with excellent characteristics. Among the parameters, the number of excitation (NEX) can acquire images with excellent characteristics without additional degradation of image characteristics. In contrast, appropriate NEX setting is required since the scan time increases and motion artifacts may occur. Therefore, in this study, after fixing all MRI parameters through the MRiLab simulation program, we tried to evaluate the tendency of image characteristics according to changing NEX through quantitative evaluation of brain T2 weighted images acquired by adjusting only NEX. To evaluate the noise level and similarity of the acquired image, signal to noise ratio (SNR), contrast to noise ratio (CNR), root mean square error (RMSE) and peak signal to noise ratio (PSNR) were calculated. As a result, both noise level and similarity evaluation factors showed improved values as NEX increased, while the increasing width gradually decreased. In conclusion, we demonstrated that an appropriate NEX setting is important because an excessively large NEX does not affect image characteristics improvement and cause motion artifacts due to a long scan.

Spinal Presentation of Spontaneous Intracranial Hypotension (자발두개내압저하의 척추 자기공명영상 소견)

  • Hye Jin Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.1
    • /
    • pp.24-35
    • /
    • 2024
  • Spontaneous intracranial hypotension (SIH), which generally presents as orthostatic headache, is increasingly being identified due to improved imaging technologies and heightened awareness. Many prior studies have reported the characteristic brain MRI findings of SIH. However, recently, focus has shifted to spinal MRI, as SIH is believed to be caused by leakage of cerebrospinal fluid from the spinal dural sac. Advanced techniques such as ultrafast CT myelography and digital subtraction myelography have emerged as useful technique to identify the site of cerebrospinal fluid leakage. In this review, we discuss the diagnosis, spinal MRI findings, imaging techniques, and treatment of SIH.

Medial Longitudinal Fasciculus on MRI in a Patient with Internuclear Ophthalmoparesis: A Case Report (신경핵사이 눈근육마비환자에서 자기공명영상에서의 내측세로다발: 증례 보고)

  • Kim, Sung Min;Kim, Ho Kyun;Lee, Hui Joong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.167-170
    • /
    • 2014
  • The medial longitudinal fasciculus (MLF) is myelinated composite tract, lying near the midline, ventral to periaqueductal grey matter that plays a key role in coordinating eye movements. A lesion of the MLF results in an ipsilateral adduction deficit and a contralateral abducting nystagmus, referred to as an internuclear ophthalmoparesis. The blended tract with adjacent white matter in pons and midbrain is indistinguishable on brain imaging such as CT and MRI. Until now, to the best of our knowledge, MLF is not delineated on in vivo MRI. We present a case showing the whole connecting courses of MLF lesion on MRI in a patient with inflammatory demyelinating disorder.

Investigation of Perfusion-weighted Signal Changes on a Pulsed Arterial Spin Labeling Magnetic Resonance Imaging Technique: Dependence on the Labeling Gap, Delay Time, Labeling Thickness, and Slice Scan Order (동맥스핀표지 뇌 관류 자기공명영상에서 라벨링 간격 및 지연시간, 표지 두께, 절편 획득 순서의 변화에 따른 관류 신호변화 연구)

  • Byun, Jae-Hoo;Park, Myung-Hwan;Kang, Ji-Yeon;Lee, Jin-Wan;Lee, Kang-Won;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.108-118
    • /
    • 2013
  • Currently, an arterial spin labeling (ASL) magnetic resonance imaging (MRI) technique does not routinely used in clinical studies to measure perfusion in brain because optimization of imaging protocol is required to obtain optimal perfusion signals. Therefore, the objective of this study was to investigate changes of perfusion-weighed signal intensities with varying several parameters on a pulsed arterial spin labeling MRI technique obtained from a 3T MRI system. We especially evaluated alternations of ASL-MRI signal intensities on special brain areas, including in brain tissues and lobes. The signal targeting with alternating radiofrequency (STAR) pulsed ASL method was scanned on five normal subjects (mean age: 36 years, range: 29~41 years) on a 3T MRI system. Four parameters were evaluated with varying: 1) the labeling gap, 2) the labeling delay time, 3) the labeling thickness, and 4) the slice scan order. Signal intensities were obtained from the perfusion-weighted imaging on the gray and white matters and brain lobes of the frontal, parietal, temporal, and occipital areas. The results of this study were summarized: 1) Perfusion-weighted signal intensities were decreased with increasing the labeling gap in the bilateral gray matter areas and were least affected on the parietal lobe, but most affected on the occipital lobe. 2) Perfusion-weighted signal intensities were decreased with increasing the labeling delay time until 400 ms, but increased up to 1,000 ms in the bilateral gray matter areas. 3) Perfusion-weighted signal intensities were increased with increasing the labeling thickness until 120 mm in both the gray and white matter. 4) Perfusion-weighted signal intensities were higher descending scans than asending scans in both the gray and white matter. We investigated changes of perfusion-weighted signal intensities with varying several parameters in the STAR ASL method. It should require having protocol optimization processing before applying in patients. It has limitations to apply the ASL method in the white matter on a 3T MRI system.

Brain Areas involved in graphaesthesia : Tactile sensation to letter recognition (문자감각인지와 관련된 뇌영역에 대한 연구 : 문자인지와 관련된 감각과정에 대한 기능적 뇌자기공명영상 연구)

  • 김광기;우성호;이경민
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.208-210
    • /
    • 2002
  • 신경과 의사들은 실제 임상에서 환자들에게 대뇌피질감각의 이상 여부를 알기 위해 손바닥에 숫자나 문자를 쓰게 하여 알아 맞추게 하는 검사를 시행한다. 손바닥에 쓰여진 문자나 숫자를 인식하기 위해서는 몇 가지 단계의 인지과정이 필요할 것으로 생각된다. 첫번째로 손바닥에 닿는 감각을 인지해야 하고, 다음 단계로 이 감각들을 시공간적으로 통합하는 과정이 필요할 것이고, 이러한 정보들을 유지하면서 마지막 단계로 우리 머리 속에 있는 문자와 일치시키는 과정이 필요할 것이다. 본 연구에서는 위와 같은 가설 아래 각각에 해당할 수 있는 뇌영역을 밝히기 위해 기능적 뇌자기공명영상을 이용하였다. 손바닥의 일차적 감각을 인지하는 데는 일차감각영역이 활성화 되었고, 이차감각영역의 활성은 감각들의 시공간적 통합과 관련될 것으로 생각되었으며, 이것들을 유지하는 것은 작업기억의 하부구조인 시공간 그림판과 관련되는 영역이며, 문자를 일치시키는 과정은 브로카영역 부근의 활성과 관련되는 것으로 생각되었다. 위의 가설에 대한 추가검증 및 실제로 일어나는 인지과정에 대한 추가적인 연구가 필요할 것이다.

  • PDF

Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm (개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.195-202
    • /
    • 2009
  • In this paper, we propose the regions segmentation method of the white matter and the gray matter for brain MR image by using the ant colony optimization algorithm. Ant Colony Optimization (ACO) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. This algorithm finds the expected pixel for image as the real ant finds the food from nest to food source. Then ants deposit pheromone on the pixels, and the pheromone will affect the motion of next ants. At each iteration step, ants will change their positions in the image according to the transition rule. Finally, we can obtain the segmentation results through analyzing the pheromone distribution in the image. We compared the proposed method with other threshold methods, viz. the Otsu' method, the genetic algorithm, the fuzzy method, and the original ant colony optimization algorithm. From comparison results, the proposed method is more exact than other threshold methods for the segmentation of specific region structures in MR brain image.

Practical Considerations of Arterial Spin Labeling MRI for Measuring the Multi-slice Perfusion in the Human Brain (스핀 라벨링 자기공명영상을 이용한 사람 뇌에서의 뇌 관류영상의 현실적 문제점을 향상 시키는 방법 연구)

  • Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this work practical considerations of a pulsed arterial spin labeling MRI are presented to reliable multi-slice perfusion measurements In the human brain. Three parameters were considered in this study. First, In order to improve slice profile and Inversion efficiency of a labeling pulse a high power Inversion pulse of adiabatic hyperbolic secant was designed. A $900^{\circ}$ rotation of the flip angle was provided to make a good slice profile and excellent Inversion efficiency. Second, to minimize contributions of a residual magnetization be4ween Interleaved scans of control and labeling we tested three different conditions which were applied 1) only saturation pulses, 2) only spotter gradients, and 3) combinations of saturation pulses and spotter gradients Applications of bo4h saturation pulses and spoiler gradients minimized the residual magnetization. Finally, to find a minimum gap between a tagged plane and an imaging plane we tested signal changes of the subtracted image between control and labeled Images with varying the gap. The optimum gap was about 20mm. In conclusion, In order to obtain high quality of perfusion Images In human brain It Is Important to use optimum parameters. Before routinely using In clinical studios, we recommend to make optimizations of sequence parameters.

  • PDF

Changes in Total Cerebral Blood Flow with Aging, Parenchymal Volume Changes, and Vascular Abnormalities: a Two-dimensional Phase-Contrast MRI Study (나이와 뇌실질부피 변화 및 혈관이상에 따른 총뇌혈류량 변화: 이차원 위상대조 자기공명영상을 이용한 연구)

  • Liu Haiying;Shin Tae-Beom;Youn Seong-Kuk;Oh Jong-Yong;Lee Young-Il;Choi Sun-Seob
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.17-23
    • /
    • 2004
  • Purpose : To evaluate changes in total cerebral blood flow (tCBF) with aging, parenchymal volume changes and vascular abnormalities, using 2 dimensional (D) phase-contrast magnetic resonance imaging (PC MRI). Materials and Methods : Routine brain MRI including T2 weighted image, time-of-flight (TOF) MR Angiography (MRA) and 2D PC MRI were performed in 73 individuals, including 12 volunteers. Normal subjects (12 volunteers, and 21 individuals with normal MRI and normal MRA) were classified into groups according to age (18-29, 30-49 and 50-66 years). For the group with abnormalities in brain MRIs, cerebral parenchymal volume changes were scored according to the T2 weighted images, and atherosclerotic changes were scored according to the MRA findings. Abnormal groups were classified into 4 groups: (i) mild reduction in volume, (ii) marked reduction in volume by parenchymal volume and atherosclerotic changes, and (iii) increased volume and (iv) Moya-moya disease. Volumetric flow was measured at the internal carotid artery (ICA) and vertebral artery bilaterally using the velocity-flow diagrams from PC MRI, and combined 4 vessel flows and tCBF were compared among all the groups. Results : The age-specific distribution of tCBFs in normal subjects were as follows: $12.0{\pm}2.1ml/sec$ in 18-29 years group, $11.8{\pm}1.9ml/sec$ in 30-49 years group, $10.9{\pm}2.2ml/sec$ in 50-66 years group. The distribution of tCBFs in the different subsets of the abnormal population were as follows: $9.5{\pm}2.5ml/sec$ in the group with mild reduction in volume, $7.6{\pm}2.0ml/sec$ in the group with marked reduction in volume, and $7.3{\pm}1.2ml/sec$ and $7.0{\pm}1.1ml/sec$ in the increased parenchymal volume and Moya-moya disease groups respectively. Conclusion : Total cerebral blood flow decreases with increasing age with a concomitant reduction in parenchymal volumes and increasing atherosclerotic changes. It is also reduced in the presence of increased parenchymal volume and Moya-moya disease.2D PC MRI can be used as a tool to evaluate tCBF with aging and in the presence of various conditions that can affect parenchymal volume and cerebral vasculature.

  • PDF

Analysis of Online Game Addciton with fMRI (fMRI를 이용한 온라인게임 중독 특성 분석)

  • Nam, Sang-Chun;Song, Ki-Sang
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.6
    • /
    • pp.35-42
    • /
    • 2010
  • In this paper, the characteristics of online game addiction have been analyzed using fMRI. The fMRI images are taken from six target subjects who are around 20 years old, right-handed, and undergraduate male students with online game stimulations. The images are processed using SPM5, and statistical analysis showed following characteristics. First, online game stimuli produces an activation in BA18 of brain, and the Pearson correlation coefficient between the activation intensity of BA18 area and the addiction index value is very highly as .94. Second, the Pearson correlation coefficient is .75 between addiction index of subjects and activation index of the mesencephalon. From these observations, we found that the online game stimuli were processed as visual stimuli by subjects' brain, and the subject's brain with bigger addiction index processes more actively from the online game stimuli. Also, the online game stimuli activate the mesolimbic system, and therefore these findings may contribute for comparing the mechanism between general addiction and online game addiction.

  • PDF