• Title/Summary/Keyword: 뇌파(EEG)

Search Result 834, Processing Time 0.025 seconds

Independent Component Analysis of EEG and Source Position Estimation (EEG신호의 독립성분 분석과 소스 위치추정)

  • Kim, Eung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.35-46
    • /
    • 2002
  • The EEG is a time series of electrical potentials representing the sum of a very large number of neuronal dendrite potentials in the brain. The collective dynamic behavior of neural mass of different brain structures can be assessed from EEG with depth electrodes measurements at regular time intervals. In recent years, the theory of nonlinear dynamics has developed methods for quantitative analysis of brain function. In this paper, we considered it is reasonable or not for ICA apply to EEG analysis. Then we applied ICA to EEG for big toe movement and separated the independent components for 15 samples. The strength of each independent component can be represented on the topological map. We represented ICA can be applied for time and spatial analysis of EEG.

EEG Signals Measurement and Analysis Method for Brain-Computer Interface (뇌와 컴퓨터의 인터페이스를 위한 뇌파 측정 및 분석 방법)

  • Sim, Kwee-Bo;Yeom, Hong-Gi;Lee, In-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.605-610
    • /
    • 2008
  • There are many methods for Human-Computer Interface. Recently, many researchers are studying about Brain-Signal this is because not only the disabled can use a computer by their thought without their limbs but also it is convenient to general people. But, studies about it are early stages. This paper proposes an EEG signals measurement and analysis methods for Brain-Computer Interface. Our purpose of this research is recognition of subject's intention when they imagine moving their arms. EEG signals are recorded during imaginary movement of subject's arms at electrode positions Fp1, Fp2, C3, C4. We made an analysis ERS(Event-Related Synchronization) and ERD(Event-Related Desynchronization) which are detected when people move their limbs in the ${\mu}$ waves and ${\beta}$ waves. Results of this research showed that ${\mu}$ waves are decreased and ${\beta}$ waves are increased at left brain during the imaginary movement of right hand. In contrast, ${\mu}$ waves are decreased and ${\beta}$ waves are increased at right brain during the imaginary movement of left hand.

The Application of Quantitative Electroencephalography (Spectral Edge Frequency 95) to Evaluate Sedation in Dogs (개에서 진정 평가를 위한 정량적 뇌파검사의 적용)

  • Kim Min-Su;Nam Tchi-Chou
    • Journal of Veterinary Clinics
    • /
    • v.23 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • This study was performed to evaluate sedation with quantitative electroencephalography (EEG) analysis in dogs. EEG is used to evaluate objectively the effects of CNS acting with brain and behavioral changes. Especially, spectral edge frequency 95 (SEF 95) parameter is an effective method to determine the sedative status. The SEF 95 is the frequency below 95% of the total power. Twelve healthy intact male Miniature Schnauzer dogs, which did not show any neurological abnormalities and disease, were used for the study. EEG electrodes were inserted in subcutaneous tissue over the calvaria without entering adjacent muscles. The EEG data were acquired and analyzed by EEG raw wave and spectral edge frequency 95 analysis. After the administration of sedatives, the SEF 95 values were shown the significant changes compared with the normal state In all groups (p<0.05). It is suggested that SEF 95 analysis is useful method for assessing the state of sedation in dogs.

Design of EEG Signal Security Scheme based on Privacy-Preserving BCI for a Cloud Environment (클라우드 환경을 위한 Privacy-Preserving BCI 기반의 뇌파신호 보안기법 설계)

  • Cho, Kwon;Lee, Donghyeok;Park, Namje
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • With the advent of BCI technology in recent years, various BCI products have been released. BCI technology enables brain information to be transmitted directly to a computer, and it will bring a lot of convenience to life. However, there is a problem with information protection. In particular, EEG data can raise issues about personal privacy. Collecting and analyzing big data on EEG reports raises serious concerns about personal information exposure. In this paper, we propose a secure privacy-preserving BCI model in a big data environment. The proposed model could prevent personal identification and protect EEG data in the cloud environment.

Music classification system through emotion recognition based on regression model of music signal and electroencephalogram features (음악신호와 뇌파 특징의 회귀 모델 기반 감정 인식을 통한 음악 분류 시스템)

  • Lee, Ju-Hwan;Kim, Jin-Young;Jeong, Dong-Ki;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.115-121
    • /
    • 2022
  • In this paper, we propose a music classification system according to user emotions using Electroencephalogram (EEG) features that appear when listening to music. In the proposed system, the relationship between the emotional EEG features extracted from EEG signals and the auditory features extracted from music signals is learned through a deep regression neural network. The proposed system based on the regression model automatically generates EEG features mapped to the auditory characteristics of the input music, and automatically classifies music by applying these features to an attention-based deep neural network. The experimental results suggest the music classification accuracy of the proposed automatic music classification framework.

Analysis of Dimensionality Reduction Methods Through Epileptic EEG Feature Selection for Machine Learning in BCI (BCI에서 기계 학습을 위한 간질 뇌파 특징 선택을 통한 차원 감소 방법 분석)

  • Tong, Yang;Aliyu, Ibrahim;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1333-1342
    • /
    • 2018
  • Until now, Electroencephalography(: EEG) has been the most important and convenient method for the diagnosis and treatment of epilepsy. However, it is difficult to identify the wave characteristics of an epileptic EEG signals because it is very weak, non-stationary and has strong background noise. In this paper, we analyse the effect of dimensionality reduction methods on Epileptic EEG feature selection and classification. Three dimensionality reduction methods: Pincipal Component Analysis(: PCA), Kernel Principal Component Analysis(: KPCA) and Linear Discriminant Analysis(: LDA) were investigated. The performance of each method was evaluated by using Support Vector Machine SVM, Logistic Regression(: LR), K-Nearestneighbor(: K-NN), Decision Tree(: DR) and Random Forest(: RF). From the experimental result, PCA recorded 75% of highest accuracy in SVM, LR and K-NN. KPCA recorded 85% of best performance in SVM and K-KNN while LDA achieved 100% accuracy in K-NN. Thus, LDA dimensionality reduction is found to provide the best classification result for epileptic EEG signal.

Efficient Brainwave Transmission VANET Routing Protocol at Cross Road in Urban Area (도심 사거리 교차로 지역의 효율적인 뇌파전송 VANET 라우팅 프로토콜)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.3
    • /
    • pp.329-334
    • /
    • 2014
  • Recently, various electronic functions are developed for car drivers as the advent of electrical automobile. Especially, there are functions to examine for preventing drowsy or healthcare through monitoring brainwave(EEG) of drivers in real time. This function can be provided by transmitting driver's EEG, and the network function for transmission among cars or between car and road side infrastructure is a vital issue. Therefore, in this paper, to provide efficient routing protocol for transmitting EEG data at a cross road in an urban area, 5 different wireless communication network applied each routing protocol such as AODV, DSR, GRP, OLSR, and TORA is designed and simulated in the OPNet network simulator, then it is evaluated for the result.

EEG Analysis of Learning Attitude Change of Female College Student on e-Learning (여대생의 이러닝 학습태도 변화에 따른 뇌파 분석)

  • Jang, Jae-Kyung;Kim, Ho-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.42-50
    • /
    • 2011
  • Using EEG, human physiological signal, as part of research which investigates the state of student learning and provides appropriate feedback to maximize learning efficiency, the relationship of learning attitude and analysis of EEG for female college student is presented. We study the reaction of learner's EEG using the concentration level extracted from the EEG power spectrum when students learn at various learning attitude. The experiment was conducted for the concentrating on learning and, as a control group, erratic attitude and closed eyes state. The attitude of concentrated Learning shows high concentration index and low relaxation index, where as the erratic attitude, such as eye movement and clicking, shows high level of attention index and noisy wave ratio. Especially, the state of closed eyes shows the ratio of alpha and theta wave under 1. This is distinct with open eyes cases.

Electroencephalogram-based Driver Drowsiness Detection System Using AR Coefficients and SVM (AR계수와 SVM을 이용한 뇌파 기반 운전자의 졸음 감지 시스템)

  • Han, Hyungseob;Chong, Uipil
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.768-773
    • /
    • 2012
  • One of the main reasons for serious road accidents is driving while drowsy. For this reason, drowsiness detection and warning system for drivers has recently become a very important issue. Monitoring physiological signals provides the possibility of detecting features of drowsiness and fatigue of drivers. One of the effective signals is to measure electroencephalogram (EEG) signals and electrooculogram (EOG) signals. The aim of this study is to extract drowsiness-related features from a set of EEG signals and to classify the features into three states: alertness, drowsiness, sleepiness. This paper proposes a drowsiness detection system using Linear Predictive Coding (LPC) coefficients and Support Vector Machine (SVM). Samples of EEG data from each predefined state were used to train the SVM program by using the proposed feature extraction algorithms. The trained SVM program was tested on unclassified EEG data and subsequently reviewed according to manual classification. The classification rate of the proposed system is over 96.5% for only very small number of samples (250ms, 64 samples). Therefore, it can be applied to real driving incident situation that can occur for a split second.

Comparison of EEG Topography Labeling and Annotation Labeling Techniques for EEG-based Emotion Recognition (EEG 기반 감정인식을 위한 주석 레이블링과 EEG Topography 레이블링 기법의 비교 고찰)

  • Ryu, Je-Woo;Hwang, Woo-Hyun;Kim, Deok-Hwan
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.3
    • /
    • pp.16-24
    • /
    • 2019
  • Recently, research on emotion recognition based on EEG has attracted great interest from human-robot interaction field. In this paper, we propose a method of labeling using image-based EEG topography instead of evaluating emotions through self-assessment and annotation labeling methods used in MAHNOB HCI. The proposed method evaluates the emotion by machine learning model that learned EEG signal transformed into topographical image. In the experiments using MAHNOB-HCI database, we compared the performance of training EEG topography labeling models of SVM and kNN. The accuracy of the proposed method was 54.2% in SVM and 57.7% in kNN.