• Title/Summary/Keyword: 뇌관 안전성

Search Result 24, Processing Time 0.024 seconds

Utilization of Non-electric Detonator for the Safety of the Tunnel Blasting Site (터널발파 현장의 안전성 확보를 위한 비전기뇌관 활용방안)

  • Choi, Hyung-Bin
    • Explosives and Blasting
    • /
    • v.32 no.3
    • /
    • pp.26-36
    • /
    • 2014
  • A survey for understanding the opinion about the safety and economy of different types of detonators used in domestic tunnel construction was carried out for total 345 people in related areas. From the result, it was found that 86.7% of the surveyed people felt non-electric detonator was safe. From the experimental points that the cost of detonators is in charge of 8.1% in overall tunnel blasting cost, and the utilization of non-electric detonators will also contribute to the prevention of blasting accidents by the electrical safety, this study can help providing opinions and basic data collected from related areas to manufacturing companies, police department, and companies ordering tunnel construction.

A Method for the Analysis of the Radiowave Receiving Characteristics of the Electric Detonator (전기뇌관의 전파 수신특성 분석방법)

  • Kim, Mi-Sun;Park, Jin-Seok;Ahn, Bierng-Chearl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • In this paper, a method is proposed for the analysis of radiowave receiving characteristics of an ammunition with electric detonator. In this method, an ammunition with electric detonator is modelled as a receiving antenna with its gain obtained by computer simulation or measurement. The induced radiowave power is obtained by inserting the gain of the electric detonator in the antenna coupling formula. Radiowave receiving characteristics at very close distances are obtained by Treasuring the transmission coefficient between a half-wave dipole and the electric detonator model. Radiowave receiving characteristics of the electric detonator in a 105mm tank ammunition are obtained using the proposed method and the safety of the 900 MHz RFID reader on the detonator is assessed.

NON-MASS DETONATOR에 대하여 (대량 비순폭뇌관)

  • 손경복;박종석;김술환
    • Explosives and Blasting
    • /
    • v.9 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • 뇌관의 수송, 최급중 안전성을 향상시키기 위하여 대량 순폭을 방지하는 방법으로 첫째 뇌관을 구조적으로 NON-MASS DETONATOR화 하는 방법과 둘째 포장법을 개선하여 NON-MASS DETONATON이 되지 않는 방법을 검토하였다. NON-MASS DETONATOR로 구조변경은 제조 설비확보, 화약종류를 바꾸는 등 문제점이 있어 당장 시행이 곤란하고 포장방법 개선은 포장원가 상승 요인은 있으나 현재 국내 시판되는 뇌관의 구조변경 없이 NON-MASS가 가능하므로 적극적으로 검토할 필요가 있을것으로 판단된다.

  • PDF

A Case Study on the Applicability Evaluation of Electronic Detonator for Non-Vibration Excavation Section (무진동 굴착구간에 대한 전자뇌관의 적용성 평가 사례)

  • Seung-Won, Jung;Jin-Hyuk, Song;Nam-Sun, Hwang;Nam-Soo, Kim;Min-Sung, Jung
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.47-56
    • /
    • 2022
  • It was designed as the mechanical excavation mass method on 176m because the safety thing is located around the site. But low-vibration blasting using an electronic detonator was proposed to improve constructability and economy. As a result of the suggestion blasting, both blasting noise and vibration were safe within the allowable limit, confirming the applicability of low-vibration blasting using an electronic detonator to the section. And compared with the mechanical mass excavation method, an economic evaluation was conducted about the section, and it was evaluated that there was an economic advantage as the construction period was reduced by 88 days.

The History & Future Prospect of Industrial Explosives and Pyrotechnic (화약 및 화공품의 역사와 향후 전망에 관한 연구)

  • 김희창;안명석;김종현
    • Explosives and Blasting
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2000
  • 인류의 역사에서 "제2의불"의 발견이라고 하는 것이 화약의 발명이다. 이 화약은 활용성과 기능성 및 안전성에 따라 흑색화약으로부터 에멀젼(Emulsion)폭약에 이르기까지, 그리고 공업 뇌관에서부터 비전기식 뇌관에 이르기까지 부단히 개발 발전되어 왔고, 그 응용범위도 다양해졌다. 또한 "불의 예술"이라고도 하고 "밤하늘의 서사시"라고도 일컬어지는 연화를 사용한 불꽃놀이가 각종 기념행사 때 볼거리로 모든 이를 즐겁게 하여준다. 이에 화약류의 올바른 이해와 사용을 위해 연화를 포함한 화약류의 역사를 살펴보고 화약기술의 발전방향을 전망해 보고자 한다.를 살펴보고 화약기술의 발전방향을 전망해 보고자 한다.

  • PDF

Repair of Distal Aortic Arch and Descending Aorta Dissection under Right Atrium-Retrograde Cerebral Perfusion (우심방-역행성 뇌관류 하에 원위 대동맥궁 및 하행대동맥 박리증의 수술)

  • 최종범;양현웅;박권재;임영혁
    • Journal of Chest Surgery
    • /
    • v.35 no.10
    • /
    • pp.740-744
    • /
    • 2002
  • Retrograde cerebral perfusion under hypothermic circulatory arrest is a simple and useful adjunct to avoid cerebral ischemic injury in the treatment of aortic arch pathology. In the surgery of distal aortic arch and proximal descending aortic lesions through the left thoracotomy incision, right atrium-retrograde cerebral perfusion (RA-RCP) through a venous cannula positioned into the right atrium is simpler than retrograde cerebral perfusion through superior vena cava. The time limits for RA-RCP during aortic arch reconstruction have yet to be clarified. We, herein, present a case with uneventful recovery after RA-RCP of 94 minutes during reconstruction of aortic arch and descending aorta. These data suggest that RA-RCP, as an adjunct to hypothermic circulatory arrest, may prolong the circulatory arrest time and thus prevent ischemic injury of the brain, even when RA-RCP exceeds 90 minutes.

A Case Study of GTX A Tunnel Station Blasting with Electronic Detonator (GTX A 터널정거장에 대한 전자뇌관 적용 시공 사례)

  • Hwang, Nam-Sun;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Seong, Yoo-Hyeon;Lee, Chang-Won
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.24-34
    • /
    • 2021
  • Electronic detonators are widely used in various construction sites due to accurate delay time. Including the cases with exceeded noise and vibration from site using electric/non-electric detonator, electronic detonators are used to improve blast fragmentation or to reduce the cost of secondary partial blasting. Furthermore, the number of cases using electronic detonators are increased for reduction of the cost and construction period by maximizing operations efficiency. This case study is about applying electronic detonators on large section station, tunnel construction site which is the part of urban area GTX A project. Although it was initially planned to utilize non-electric detonators, damage was inflicted on safety-thing. We have considered blasting method using electronic detonators as solution of this problem. By applying electronic detonators, we not only satisfied environmental regulations but also prevented nearby safety-thing from getting damaged. In addition, we were able to shorten the construction period than the initial plan by conducting single simultaneous blasting on large section station, in order to ensure safe and efficient construction.

A Case Study on Explosive Demolition of Gunsan Steam Power Station in Republic of Korea (군산화력발전소 발파해체 실용화 시험시공 사례)

  • Min, Hyung-Dong;Song, Young-Suk;Kim, Hyo-Jin;Seo, Young-Soo
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.11-21
    • /
    • 2007
  • The main structure of Gunsan steam power station was demolished by the toppling method using high explosives. Height of a main building is 58m and a total floor area is $292,000m^2$. It is Rahmen(rigid-frame) structure consisted of almost columns and beams and slabs exist only in one part of the building for the electricity generators equipments. To improve the efficiency of blasting work, it is separated into 4 sectors. Blasting floors were 1, 2, 3, & 4 stories from first sector to third sector, while 1, 2, 5, & 7 of fourth sector were blasted because it had not slabs. About 102.675 kg of the MegaMITE were used with 225 electric detonator and 638 non-electric detonators to check detonator connection and confidence of detonation. The blasting noise and vibration were monitored to evaluate the environment effect and the damage of the nearby structures.

A Case Study About Applying Electronic Detonator on Downtown Tunnel Construction Area (도심지 터널에 대한 전자뇌관 적용 시공 사례)

  • Hwang, Nam-Sun;Heo, Eui-Haeng;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Seong, Yoo-Hyeon;Kim, Nam-Su
    • Explosives and Blasting
    • /
    • v.40 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Electronic detonators are now widely used in various construction sites and quarry mines. Including the sites where safety-thing is located nearby, Cases of using electronic detonators are increasing to maximize operational efficiency by improving blast fragmentation or reducing the cost of secondary blasting. This case study is about applying for electronic detonators on zone 00 construction site, which is the part of urban area metropolitan express rail A line project. Although the project was initially planned to utilize non-electric detonators, Electronic detonators are considered as the solution not only for safe and fast excavation, but also to minimize civil complaint and the damage of safety-thing. By applying electronic detonators, we were able to satisfy environmental regulations standards and prevent nearby safety-thing from getting damaged.