• 제목/요약/키워드: 논문 분류

검색결과 12,584건 처리시간 0.063초

배치 정규화와 CNN을 이용한 개선된 영상분류 방법 (An Improved Image Classification Using Batch Normalization and CNN)

  • 지명근;전준철;김남기
    • 인터넷정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.35-42
    • /
    • 2018
  • 딥 러닝은 영상 분류를 위한 여러 방법 중 높은 정확도를 보이는 방법으로 알려져 있다. 본 논문에서는 딥 러닝 방법 가운데 합성곱 신경망 (CNN:Convolutional Neural Network)을 이용하여 영상을 분류함에 있어 배치 정규화 방법이 추가된 CNN을 이용하여 영상 분류의 정확도를 높이는 방법을 제시하였다. 본 논문에서는 영상 분류를 더 정확하게 수행하기 위해 기존의 뉴럴 네트워크에 배치 정규화 계층 (layer)를 추가하는 방법을 제안한다. 배치 정규화는 각 계층에 존재하는 편향을 줄이기 위해 고안된 방법으로, 각 배치의 평균과 분산을 계산하여 이동시키는 방법이다. 본 논문에서 제시된 방법의 우수성을 입증하기 위하여 SHREC13, MNIST, SVHN, CIFAR-10, CIFAR-100의 5개 영상 데이터 집합을 이용하여 영상분류 실험을 하여 정확도와 mAP를 측정한다. 실험 결과 일반적인 CNN 보다 배치 정규화가 추가된 CNN이 영상 분류 시 보다 높은 분류 정확도와 mAP를 보임을 확인 할 수 있었다.

CNN을 이용한 음성 데이터 성별 및 연령 분류 기술 연구 (A Study on the Gender and Age Classification of Speech Data Using CNN)

  • 박대서;방준일;김화종;고영준
    • 한국정보기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.11-21
    • /
    • 2018
  • 본 논문에서는 사람을 대신하여 분류, 예측 하는 딥러닝 기술을 활용하여 목소리를 통해 남녀노소를 분류하는 연구를 수행한다. 연구과정은 기존 신경망 기반의 사운드 분류 연구를 살펴보고 목소리 분류를 위한 개선된 신경망을 제안한다. 기존 연구에서는 도시 데이터를 이용해 사운드를 분류하는 연구를 진행하였으나, 얕은 신경망으로 인한 성능 저하가 나타났으며 다른 소리 데이터에 대해서도 좋은 성능을 보이지 못했다. 이에 본 논문에서는 목소리 데이터를 전처리하여 특징값을 추출한 뒤 추출된 특징값을 기존 사운드 분류 신경망과 제안하는 신경망에 입력하여 목소리를 분류하고 두 신경망의 분류 성능을 비교 평가한다. 본 논문의 신경망은 망을 더 깊고 넓게 구성함으로써 보다 개선된 딥러닝 학습이 이루어지도록 하였다. 성능 결과로는 기존 연구와 본 연구의 신경망에서 각각 84.8%, 91.4%로 제안하는 신경망에서 약 6% 더 높은 정확도를 보였다.

Bayes의 복합 의사결정모델을 이용한 다중에코 자기공명영상의 context-dependent 분류 (Context-Dependent Classification of Multi-Echo MRI Using Bayes Compound Decision Model)

  • 전준철;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • 제3권2호
    • /
    • pp.179-187
    • /
    • 1999
  • 목적 : 본 논문은 Bayes의 복합 의사결정모델을 이용한 효과적인 다중에코 자기공명영상의 분류방법을 소개한다. 동질성을 갖는 영역 혹은 경계선부위 등 영역을 명확히 분할하기 위하여 영상 내 국소 부위 이웃시스댐상의 주변정보(contextual information)를 이용한 분류 방법을 제시한다. 대상 및 방법 : 통계학적으로이질적 성분들로 구성된 영상을 대상으로 한 주변정보를 이용한 분류결과는 영상내의 국소적으로 정적인 영역들을이웃화소시스탬 내에서 정의되는 상호작용 인자의 메커니즘에 의해 분리함으로서 개선시킬 수 있다. 영상의 분류과정에서 분류결과의 정확도를 향상시키기 위하여 분류대상화소의 주변화소에 대한 분류패턴을 이용한다면 일반적으로 발생하는 분류의 모호성을 제거한다. 그러한 이유는 특정 화소와 인접한 주변의 데이터는 본질적으로 특정 화소와 상관관계를 내재하고 있으며, 만일 주변데이터의 특성을 파악할수 있다면, 대상화소의 성질을 결정하는데 도움을 얻을 수 있다. 본 논문에서는 분류 대상화소의 주변정보와 Bayes의 복합 의사결정모델을 이용한 context-dependent 분류 방법을 제시한다. 이 모델에서 주변 정보는 국소 부위 이웃시스댐으로부터 전이확률(tran­s sition probability)을 추출하여 화소간의 상관관계의 강도를 결정하는 상호인자 값으로 사용한다. 결과 : 본논문에서는 다중에코자기공명영상의 분류를 위하여 Bayes의 복합 의사결정모델을 이용한 분류방법을 제안하였다. 주변 데이터를 고려하지 않는 context-free 분류 방법에 비하여 특히 동질성을 강는 영역 혹은 경계선 부위 등에서의 분류결과가 우수하게 나타났으며, 이는 주변정보를이용한 결과이다. 결론 : 본 논문에서는클러스터링 분석과 복합 의사결정 Bayes 모델을 이용하여 다중에코 자기공명영상의 분류 결과를 향상시키기 위한 새로운 방법을 소개하였다.

  • PDF

확률 분포와 추론에 의한 이메일 분류 및 정리 방법 (Classification and Allocation method of e-mail using possibility distribution and prediction)

  • 고남현;김지윤;최만규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.95-96
    • /
    • 2016
  • 본 논문에서는 디리클레 분포와 베이즈 추론 모델을 활용하여 전자우편을 분류하고 정리하는 방법을 제안한다. 과거 원치 않는 광고성 이메일인 스팸 탐지에서 시작한 전자우편 분류는 지속적인 송수신 량의 증가와 내용의 다양화로 인해 광고성과 정보성의 판단 기준이 모호해진 상태이다. 스팸 탐지와 같은 이분법적 분류 방식이 아닌 내용의 주제 별로 자동 분류할 수 있는 방법이 필요하다. 본 논문에서 다루는 제안 기법은 전자우편의 내용에서 다뤄질 수 있는 주제의 종류를 예측하기 위한 방법을 제공한다. 발신하거나 수신된 전자우편이 속한 주제를 자동으로 정할 수 있다. 본 제안 기법의 활용을 통해 전자우편의 분류만이 아닌 업무 및 시장 동향 분석과 정보보안 분야에서는 악성코드 분류에 사용될 수 있을 것으로 기대된다.

  • PDF

개념분류기법을 적용한 한국에 명사분류 (Korean Noun Clustering Via Incremental Conceptual Clustering)

  • 정연수;조정미;김길창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.50-55
    • /
    • 1995
  • 많은 언어관계들이 의미적으로 유사한 단어들의 집합에 적응된다. 그러므로 단어들을 의미가 비슷한 것들의 집합으로 분류하는 것은 아주 유용한 일이다. 본 논문에서는 말뭉치로부터의 동사와 명사의 분포정보를 이용하여 명사들을 분류하고자 한다. 한국어에서는 명사마다 문장에서 그 명사를 특정한 격으로 사용할 수 있는 동사들이 제한되어 있다. 그러므로 본 논문에서는 말뭉치에서 나타나는 명사와 그 명사를 특정한 격으로 사용하는 동사들의 분포정보로부터 명사들을 분류하는 방법을 제시한다. 형태소 해석된 50만 단어 말뭉치에서 가장 빈도수가 높은 명사 85단어를 대상으로 실험하였다. 명사와 동사의 구문정보를 사용하므로 의미적으로는 다르지만 쓰임이 비슷한 단어들도 같은 부류로 분류되었다. 의미적으로 애매성을 가지는 명사들의 경우도 실험결과를 나쁘게하는 요인이 되었다. 그리고, 좀더 좋은 결과를 얻기 위해서는 동사들도 의미가 유사한 것들로 분류한 후, 명사와 동사의 분포정보가 아닌 명사와 동사들의 집합의 분포정보를 이용하는 것도 종은 방법이 될 것이다.

  • PDF

자질선정에 따른 Naive Bayesian 분류기의 성능 비교 (Performance Evaluation of a Naive Bayesian Classifier using various Feature Selection Methods)

  • 국민상;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2000년도 제7회 학술대회 논문집
    • /
    • pp.33-36
    • /
    • 2000
  • 베이즈 확률을 이용한 분류기는 자동분류 초기부터 사용되어 아직까지 이 분야에서 가장 많이 사용되는 분류기 중 하나이다. 본 논문에서는 KTSET 문서에서 임의로 추출한 198건의 정보과학회 관련 논문의 제목 및 초록을 대상으로 베이즈 확률을 이용한 문서의 자동분류 실험을 수행하였으며, 더불어 Naive Bayesian 분류기에 가장 적합한 자질선정 방법을 찾고자 카이제곱 통계량, 상호정보량 및 기대상호정보량, 정보획득량, 역문헌빈도, 역카테고리빈도 등 6가지의 자질선정 기준을 실험하였다. 실험 결과는 카이제곱 통계량을 이용한 분류 실험의 성능이 가장 좋았고, 기대상호정보량과 정보획득량, 역카테고리빈도 또한 자질수에 큰 영향을 받지 않고 비교적 안정적인 성능을 보였다.

  • PDF

영한 자동번역에서의 한국어 분류사의 반자동 구축 방법 (Semi-Automatic Building of Korean Classifiers in English-Korean MT)

  • 이기영;최승권;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.135-139
    • /
    • 2008
  • 본 논문은 영한 기계번역에서 영어 수사가 포함된 영어 명사구를 한국어로 번역할 때, 영어 명사에 대응되는 한국어 명사의 적절한 분류사를 반자동으로 구축하는 방법에 대해 기술한다. 영한 번역의 측면에서, 분류사는 목표언어인 한국어에서만 나타나는 현상이다. 따라서 영어를 한국어로 번역할 때, 적절한 분류사를 생성하지 않으면 한국어 어법에 맞지 않는 부자연스러운 번역 결과를 생성한다. 본 논문에서는 한국어 태그드 코퍼스와 한국어 의미코드 체계에 따라 한국어 분류사를 반자동으로 구축하는 방법을 제안한다. 제안하는 방법에 따라 한국어 명사에 대해서 한국어 분류사가 구축되었으며, 이렇게 구축된 분류사는 영한 기계번역시스템의 번역 사전에 'KCOUNT'라는 자질을 할당하여 부가하였다. 제안하는 방법의 검증을 위해 수동평가와 자동평가를 수행하였으며, 그 결과, 영한 기계번역의 문장 생성에 있어서 자연스러움(fluency)의 측면에서 번역률 향상이 있었다.

  • PDF

온톨로지 기반 웹 문서 분류 (Ontology-Based Document Classification)

  • 송무희;임수연;민도식;강동진;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.535-537
    • /
    • 2003
  • 본 논문에서는 웹 문서들이 가지는 용어 정보들과 어휘들의 의미구조를 계층적 형태로 표현한 온틀로지 기반 자동 문서분류 방법을 제안한다. 문서 분류는 문서들을 가장 잘 표현할 수 있는 자질들을 점하고 이러한 자질들을 통해 미리 정의된 2개 이상의 카테고리에 문서의 내용을 파악하여 가장 관련이 있는 카테고리로 할당하는 것이다. 본 논문에서는 웹 문서에서 추출한 용어 정보들의 유사도와 온톨로지 카테고리의 유사도를 계산하여 웹 문서를 분류하며, 문서 분류를 위한 실험데이터나 학습과정 없이 바로 실시간으로 문서분류가 이루어지며, 결과적으로 문서들이 가지는 고유한 의미와 관계의 식별을 통하여 보다 더 정확하게 문서분류를 가능하게 해준다.

  • PDF

런길이 부호화를 이용한 지문융선 분류 (Classification of Fingerprint Ridge Lines Using Runlength Codes)

  • 이정환;노석호;김윤호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.468-471
    • /
    • 2004
  • 본 논문에서는 런길이부호화를 이용하여 지문영상의 융선을 분류하는 방법을 연구하였다. 자동지문인식 시스템에서 단점, 분기점과 같은 특징점을 검출하기 위해 지문영상의 융선을 분류할 필요가있다. 본 논문에서는 분할된 지문영상을 런길이 부호화를 이용하여 지문융선을 분류하는 방법을 제안한다. 또한 융선의 분류와 동시에 각 런의 중심점을 연결하는 지문 세선화과정이 수행되고, 분기점 및 단점이 포함된 특징영역을 동시에 검출할 수 있다. 제안방법의 성능평가를 위해 지문영상을 사용하여 분기점 및 단점을 포함하는 특징영역을 검출하고, 동시에 지문융선을 분류할 수 있음을 보였다.

  • PDF

SVM기반 정보기술 문서분류를 위한 특성 선택 및 추출 기법 (Feature Selection and Extraction for Document Classifier for If documents based on SVM)

  • 강윤희
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 추계산학기술 심포지엄 및 학술대회 발표논문집
    • /
    • pp.75-78
    • /
    • 2001
  • 본 논문에서는 웹 문서의 자동 분류를 위한 특성 선택 및 추출기법을 기술한다. 최근 인터넷의 급속한 성장과 보급으로 전자우편과 웹을 통해 제공되어지는 정보의 양이 기하급수적으로 증가함에 따라 효율적인 문서 분류의 필요성이 증가하고 있다. 본 논문에서는 웹 디렉토리 내의 문서로부터 추출된 용어 집합을 기반으로 SVM을 사용하여 학습한 후 문서 분류를 수행한다. 본 실험의 문서는 정보통신 분야 디렉토리 서비스 시스템인 itfind로부터 수집된 문서를 대상으로 하였으며 3가지 시나리오에 따라 실험을 수행하여 각 시나리오 별로 재현율/정확율 및 오분류율을 성능 요소로 계산하였다. 본 실험은 학습 벡터 구성과정에서 잡음에 의해 다른 클래스의 문서 분류에 미치는 영향을 평가하여 SVM을 기반으로 한 문서 분류 기법이 강건함을 보였다.