본 연구는 수학 교육 분야에서 중요한 영향을 미치는 논문을 판별하고 분석하기 위한 설명가능한 인공지능(XAI) 모델을 개발하였다. 29개 국내외 수학교육 학술지의 논문 메타정보를 활용하여 수학교육 학술연구 네트워크를 구축하였다. 구축된 네트워크는 '논문과 다른 논문의 인용 네트워크', '논문과 저자 네트워크', '논문과 학술지 네트워크', '공동 저자 네트워크', '저자와 소속기관 네트워크' 등 총 5개의 세부 네트워크로 구성되었다. 랜덤포레스트 기계학습 모델을 사용하여 네트워크 내의 개별 논문의 영향력을 평가하였으며, SHAP을 이용해 영향력 있는 논문의 판별 기준을 분석하였다. '논문 네트워크 PageRank', '논문당 인용횟수의 변화량', '총 인용횟수', '저자의 h-index 변화량', '학술지의 논문당 인용횟수' 등이 중요한 판별 요인으로 나타났다. 국내와 국외 수학교육 연구의 판별 패턴을 비교 분석한 결과, 국내 연구에서는 '공동 저자 네트워크 PageRank'의 중요성이 도드라졌다. 본 연구의 XAI 모델은 논문의 영향력 판별 도구로써 연구자에게 논문 작성 시 전략적인 방향성을 제공할 수 있게 해준다. 논문 네트워크 확장, 학술대회 발표, 공동 저술 활동을 통한 저자 네트워크 활성화 등이 논문의 영향력 증진에 크게 기여한다는 결과를 얻었다. 이를 통해 연구자는 학계에서 자신의 연구가 어떠한 평가 기준에 따라 어떻게 인식되고 있는지, 그리고 그 평가에 기여하는 주요 요인이 무엇인지를 명확히 파악할 수 있을 것이다. 본 연구는 설명가능한 인공지능을 활용하여 전통적으로 많은 시간과 비용이 필요하던 수학교육 논문의 영향력 평가 방식을 혁신하였다. 이 방법은 수학교육 연구 뿐만 아니라 다른 학문 분야에서도 활용될 수 있으며, 연구활동의 효율성과 효과성을 향상시킬 것으로 기대된다.
계량정보학자들이 학술논문을 통해 과학 연구 동향을 분석하기 시작한 이후 계량서지학, 과학계량학, 계량정보학, 웹계량학, 인용분석 등은 정보학의 주요 분야로 성장하였다. 계량정보학의 최근 동향을 분석하기 위하여 이 연구에서는 계량정보학 연구출판물을 기반으로 하여 이 분야 연구 발전에 기여한 국가, 기관, 논문을 파악하고자 네트워크 분석을 수행하였다. 데이터 수집을 위해서는 SCI 데이터베이스를 이용하였으며 2001년부터 2011년까지 출판된 논문을 대상으로 하였다. 분석기법으로 Pathfinder 네트워크 분석과 PNNC기법을 사용하고, 협력관계와 연구영향도를 측정하기 위한 지표로 PageRank와 h-index 기반의 지표들을 사용하였다. 협력연구네트워크에서 주요한 역할을 하는 국가는 미국과 영국인 것으로 조사되었으며 기관으로는 유럽의 암스테르담 대학과 루벤 카톨릭대학 그리고 미국의 인디아나 대학과 해군연구개발국이 기여를 하고 있는 것으로 나타났다. 개인 논문 수준에서는 PageRank와 single paper h-index 척도로 분석한 결과 Hirsch의 h-index 논문과 Ingwersen의 웹 영향력 지수 논문이 가장 영향력 있는 것으로 조사되었다.
암을 유발하는 유전자는 모든 암 환자에게 공통적인 것은 아니며, 이러한 환자 특이적 암 유발 유전자의 탐색은 개인 맟춤형 암 치료 및 항암제 개발에 있어서 매우 중요하다. 환자 특이적 암 유발 유전자를 찾기 위한 생물 정보학 연구들이 있어왔지만, 아직 정확도 면에서는 발전의 여지가 있다. 본 논문에서는 환자 특이적 암 유발 유전자를 탐색하기 위하여 NPD (Network based Patient-specific Driver gene identification)라는 방법을 제안한다. NPD는 환자 특이적 유전자 네트워크를 구축하고, 여기에 수정된 PageRank 알고리즘을 적용하여 유전자에 점수를 부여한 후, 유전적 변이 데이터를 사용한 승률 계산 방법을 통하여 암 유발 유전자를 찾는 세 단계로 이루어진다. TCGA 데이터 베이스의 여섯 개의 암 데이터에 NPD를 적용한 결과, NPD가 기존의 환자 특이적 암 유발 유전자 탐색 방법들보다 전체적으로 높은 F1 점수를 보여줌을 확인할 수 있었다.
암환자의 예후 예측에 기여하는 유전자를 찾는 것은 환자에게 보다 적합한 치료를 제공하기 위한 도전 과제 중 하나이다. 예후 유전자를 찾기 위해 유전자 발현 데이터를 이용한 분류 모델 개발 연구가 많이 이루어지고 있다. 하지만 암의 이질성으로 인해 예후 예측의 정확도 향상에 한계가 있다는 문제가 있다. 본 논문에서는 유방암을 비롯한 6개의 암에 대한 암환자의 마이크로어레이 데이터와 생물학적 네트워크 데이터를 이용하여 페이지랭크 알고리즘을 통해 예후 유전자들을 식별하고, K-Nearest Neighbor 알고리즘을 사용하여 암 환자의 예후를 예측하는 모델을 제안한다. 그리고 페이지랭크를 사용하기 전에 K-Means 클러스터링으로 유전자 발현 패턴이 비슷한 샘플들을 나누어 이질성을 극복하고자 한다. 본 논문에서 제안한 방법은 기존의 유전자 바이오마커를 찾는 알고리즘보다 높은 예측 정확도를 보여 주었으며, GO 검증을 통해 클러스터에 특이적인 생물학적 기능을 확인하였다.
최근 Web of Science에 도입된 Eigenfactor지수와 논문 영향력 지수(Article Influence Score), 그리고 Scopus에 도입된 SJR 지수는 구글의 PageRank 알고리즘과 같은 네트워크 분석 방식의 인용지수이다. 국내 인용 색인 데이터베이스는 인용 링크가 외부로 향하는 비율과 자기 인용 비율이 높으므로 기존의 네트워크 인용 지수 산출 방식을 그대로 적용하기에는 어려움이 많다. 이 연구에서는 국내 인용색인DB에 대해서 대표적인 네트워크 인용 지수인 저널 페이지랭크를 시험적으로 측정해보고 국내 학술지의 상황을 고려한 개선방안을 모색하였다.
이 연구는 최근 발표된 단일 문헌에 대한 인용 영향력을 측정하는 여러 인용 지수에 대해서 각 지수의 특성과 지수 간 관계를 살펴보는 것을 목적으로 한다. 분석 대상 인용 지수로는 페이지랭크, SCEAS Rank, CCI, f-값, 단일 논문 h-지수의 다섯 가지와 h-지수를 변형한 세 가지 지수를 더하여 8가지를 포함하였다. 우선 단일 문헌에 대한 인용 영향력을 측정하는 다섯 가지 인용지수에 대해서 살펴보고 단일문헌 h-지수를 변형한 단일문헌 $h_S$-지수, h1-지수, $h_S$1-지수의 세 가지를 추가로 제안하였다. 각 인용 지수의 특성을 파악하기 위해서 국내 인용 데이터베이스인 KSCI 데이터베이스를 대상으로 실제 네트워크 인용 지수를 측정해보았다. 상관관계 분석과 군집분석을 수행하여 8가지 인용 지수 사이의 관계를 분석한 결과, 유사한 측정 행태를 보이는 인용 지수 군을 파악할 수 있었다. 또한 인용빈도 요인과 각 인용 지수 간의 상관관계 분석을 통해서 각 지수의 특성을 설명하였다. 마지막으로 인용 지수의 적용을 위한 고려사항과 후속 연구 방향을 제안하였다.
전 세계적으로 과학기술의 발달에 따라 육·해·공·우주에 이어 사이버공간이라는 영역 또한 전장 영역으로 인식되고 있다. 이에 따라 육·해·공·우주에서 이루어지는 물리적 작전뿐만 아니라 사이버공간에서 이루어지는 사이버 작전 수행을 위한 정의, 체계, 절차, 계획 등 다양한 요소를 설계·수립해야 한다. 본 연구에서는 사이버 작전의 표적처리(Targeting) 중 표적개발 및 우선순위 부여 단계에서 중간표적개발을 통해 선정한 사이버 표적 목록에 대한 우선순위를 부여할 때 고려할 수 사이버 표적의 중요성을 고려 요소로 선정하여 이에 대한 점수를 산출, 사이버 표적 우선순위 선정 점수의 일부로 활용하는 방안을 제시한다. 이에 따라, 사이버 표적 우선순위 부여 과정에서 사이버 표적 중요성 범주를 설정하고, 사이버 표적 중요성 개념 및 기준항목을 도출한다. 도출된 기준항목별 점수산정 및 종합을 위해 PageRank 알고리즘을 기반으로 Event Prioritization Framework 등의 매개변수를 종합한 TIR(Target Importance Rank) 알고리즘을 제안한다. 그리고 스턱스넷 사례 기반 네트워크 토폴로지 및 시나리오 데이터를 구성하여 제안된 알고리즘으로 사이버 표적 중요성 점수를 도출하고 사이버 표적의 우선순위를 선정하여 제안된 알고리즘을 검증한다.
이 연구에서는 데이터 리터러시 분야 연구의 발전 경로와 지적구조 및 떠오르는 유망 주제를 파악하고자 하였다. 이를 위해서 Web of Science에서 검색한 데이터 리터러시 관련 논문은 교육학 분야와 문헌정보학 분야 논문이 전체의 60% 가까이를 차지하였다. 우선 인용 네트워크 분석에서는 페이지랭크 알고리즘을 사용해서 인용 영향력이 높은 다양한 주제의 핵심 논문을 파악하였다. 데이터 리터러시 연구의 발전 경로를 파악하기 위해서 기존의 주경로분석법을 적용해보았으나 교육학 분야의 연구 논문만 포함되는 한계가 있었다. 이를 극복할 수 있는 새로운 기법으로 페이지랭크 주경로분석법을 개발한 결과, 교육학 분야와 문헌정보학 분야의 핵심 논문이 모두 포함되는 발전 경로를 파악할 수 있었다. 데이터 리터러시 연구의 지적구조를 분석하기 위해서 키워드 서지결합 분석을 시행하였다. 도출된 키워드 서지결합 네트워크의 세부 구조와 군집 파악을 위해서 병렬최근접이웃클러스터링 알고리즘을 적용한 결과 대군집 2개와 그에 속한 소군집 7개를 파악할 수 있었다. 부상하는 유망 주제를 도출하기 위해서 각 키워드와 군집의 성장지수와 평균출판년도를 측정하였다. 분석 결과 팬데믹 상황과 AI 챗봇의 부상이라는 시대적 배경 하에서 사회정의를 위한 비판적 데이터 리터러시가 고등교육 측면에서 급부상하고 있는 것으로 나타났다. 또한 이 연구에서 연구의 발전경로를 파악하는 수단으로 새롭게 개발한 페이지랭크 주경로분석 기법은 서로 다른 영역에서 병렬적으로 발전하는 둘 이상의 연구흐름을 발견하기에 효과적이었다.
본 연구는 수학교육에서 영향력 있는 논문을 판별하는 기계학습 프로그램 개발 연구이다. 이를 위하여 과학계량학의 관점에서 논문의 영향력을 조명하고, 수학교육 연구 네트워크를 구성하고, 네트워크 중심성 지수인 PageRank로 수학교육 연구의 영향력으로 정의하였다. 영향력 있는 수학교육 연구를 판별하기 위하여 기계학습 모델을 설계하였으며, 이를 이용하여 영향력 있는 논문이 게재된 비율이 높은 학술지를 조사한 결과 Journal for Research in Mathematics Education(25.66%), Educational Studies in Mathematics(22.12%), Zentralblatt für Didaktik der Mathematik(8.46%), Journal of Mathematics Teacher Education(5.8%), Journal of Mathematical Behavior(5.51%) 순으로 나타났다. 수학교육 전문가들이 직접 논문을 읽고 질적으로 평가한 선행연구 결과와 유사한 결과를 기계학습 프로그램으로 도출할 수 있었다. 많은 인원과 시간이 필요했던 수학교육 연구의 영향력 평가를 인공지능을 이용하여 효율적으로 실시할 수 있었다는 점에서 의의가 있다.
본 논문에서는 특허빅데이터를 분석하여 기술적 혁신과 사회변화의 관계를 규명하는 다양한 방법에 대하여 소개를 한다. 특히, 미국특허청에 1985년부터 2015년까지 등록된 4백만개 이상의 특허자료를 분석하였다. 먼저, 특허법의 변천사를 살펴보고 특허법의 발전이 특허활동에 미차는 영향에 대해서 살펴보았다. 두 번째로는, 국가별 기술군별 등록특허수를 바탕으로 군집분석을 이용하여 기술혁신 패턴이 비슷한 국가들로 군집을 만들고 각 군집의 기술혁신 특징들을 살펴보았다. 세번째로는 특허간의 인용정보를 바탕으로 특허간의 네트워크를 구축하고 page-rank 알고리즘을 이용하여 주요특허를 탐지하는 방법을 설명하였다. 마지막으로, 정준상관분석을 이용하여 기술혁신과 사회변화와의 관계를 규명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.