• Title/Summary/Keyword: 논문 구성자

Search Result 4,088, Processing Time 0.039 seconds

Searching the Major Research Domains for Establishing the Korean Criminal Psychology (한국 범죄심리학의 학문적 정립을 위한 주요 연구영역의 탐색)

  • Si Up Kim
    • Korean Journal of Culture and Social Issue
    • /
    • v.11 no.2
    • /
    • pp.109-142
    • /
    • 2005
  • This study was conducted to suggest the research domains of Criminal Psychology, which is needed to improve the disciplinary identity of the Korean Criminal Psychology. Some major textbooks of Criminal Psychology, Forensic Psychology, Legal Psychology are written by korean and foreign psychologists. Major definitions and research domains of Criminal Psychology was compared and reviewed. For aggregating the criminal psychological researches were studied by korean psychologists, a total of 211 articles and papers, which was published by Korean Psychological Association, 5 Sub-psychological Associations, and Korean Law Psychological Association, were reviewed. Several the major research domains in Criminal Psychology was suggested as follows: General psychological theories, aggression·anger·morality, adolescent delinquency, mind and motivations of criminals, victims, investigation techniques, testimony, assessment·counseling·correction·rehabilitation of criminals, prediction and prevention of crime.

Experimental study on structural integrity assessment of utility tunnels using coupled pulse-impact echo method (결합된 초음파-충격 반향 기법 기반의 일반 지하구 구조체의 건전도 평가에 관한 실험적 연구)

  • Jin Kim;Jeong-Uk Bang;Seungbo Shim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.479-493
    • /
    • 2023
  • The need for safety management has arisen due to the increasing number of years of operated underground structures, such as tunnels and utility tunnels, and accidents caused by those aging infrastructures. However, in the case of privately managed underground utility ducts, there is a lack of detailed guidelines for facility safety and maintenance, resulting in inadequate safety management. Furthermore, the absence of basic design information and the limited space for safety assessments make applying currently used non-destructive testing methods challenging. Therefore, this study suggests non-destructive inspection methods using ultrasonic and impact-echo techniques to assess the quality of underground structures. Thickness, presence of rebars, depth of rebars, and the presence and depth of internal defects are assessed to provide fundamental data for the safety assessment of box-type general underground structures. To validate the proposed methodology, different conditions of concrete specimens are designed and cured to simulate actual field conditions. Applying ultrasonic and impact signals and collecting data through multi-channel accelerometers determine the thickness of the simulated specimens, the depth of embedded rebar, and the extent of defects. The predicted results are well agreed upon compared with actual measurements. The proposed methodology is expected to contribute to developing safety diagnostic methods applicable to general underground structures in practical field conditions.

A Study on Multi-Object Data Split Technique for Deep Learning Model Efficiency (딥러닝 효율화를 위한 다중 객체 데이터 분할 학습 기법)

  • Jong-Ho Na;Jun-Ho Gong;Hyu-Soung Shin;Il-Dong Yun
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.218-230
    • /
    • 2024
  • Recently, many studies have been conducted for safety management in construction sites by incorporating computer vision. Anchor box parameters are used in state-of-the-art deep learning-based object detection and segmentation, and the optimized parameters are critical in the training process to ensure consistent accuracy. Those parameters are generally tuned by fixing the shape and size by the user's heuristic method, and a single parameter controls the training rate in the model. However, the anchor box parameters are sensitive depending on the type of object and the size of the object, and as the number of training data increases. There is a limit to reflecting all the characteristics of the training data with a single parameter. Therefore, this paper suggests a method of applying multiple parameters optimized through data split to solve the above-mentioned problem. Criteria for efficiently segmenting integrated training data according to object size, number of objects, and shape of objects were established, and the effectiveness of the proposed data split method was verified through a comparative study of conventional scheme and proposed methods.

A Study on Metaverse Framework Design for Education and Training of Hydrogen Fuel Cell Engineers (수소 연료전지 엔지니어 양성을 위한 메타버스 교육훈련 플랫폼에 관한 연구)

  • Yang Zhen;Kyung Min Gwak;Young J. Rho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • The importance of hydrogen fuel cells continues to be emphasized, and there is a growing demand for education and training in this field. Among various educational environments, metaverse education is opening a new era of change in the global education industry, especially to adapt to remote learning. The most significant change that the metaverse has brought to education is the shift from one-way, instructor-centered, and static teaching approaches to multi-directional and dynamic ones. It is expected that the metaverse can be effectively utilized in hydrogen fuel cell engineer education, not only enhancing the effectiveness of education by enabling learning and training anytime, anywhere but also reducing costs associated with engineering education.In this research, inspired by these ideas, we are designing a fuel cell education platform. We have created a platform that combines theoretical and practical training using the metaverse. Key aspects of this research include the development of educational training content to increase learner engagement, the configuration of user interfaces for improved usability, the creation of environments for interacting with objects in the virtual world, and support for convergence services in the form of digital twins.

Development of LINC 3.0 Self-Evaluation Indicators Based on CIPP Evaluation Model - Focusing on the Case of K University - (CIPP모형에 기반한 LINC 3.0 자체평가지표 개발 -K대학 기술혁신선도형 사례 중심으로-)

  • Jinyoung Kwak;Hyeree Min;Mija Shim;Youngeun Wee;Jiyoung Kim
    • Journal of Practical Engineering Education
    • /
    • v.16 no.3_spc
    • /
    • pp.309-325
    • /
    • 2024
  • The purpose of this study was to develop self-evaluation criteria for objective verification and performance analysis of LINC 3.0. To achieve this goal, evaluation indicators in the fields of human resources development and skill development and commercialization were developed and their validity was verified. We investigated previous evaluation-related studies and similar cases to construct an evaluation model and system and develop indicators. The validity of the developed evaluation indicators was secured through two round Delphi surveys. As a result of the research, LINC 3.0 evaluation indicators can be divided into the field of human resources development and skill development and commercialization. A total of 66 evaluation indicators were developed. CIPP in the field of human resources development was developed with 13 categories and 38 evaluation indicators, and CIPP in the field of skill development and commercialization was developed with 12 categories and 28 evaluation indicators. The significance of this study is that it suggests a way to increase the objective verification and validity of the university industry-academia cooperation model by developing self-evaluation indicators for the LINC 3.0 project. The evaluation indicators developed in the research need to be continuously upgraded based on field usability, and it is necessary to improve the quality and competitiveness of university education by sharing and spreading excellent affairs.

Development of a Java Compiler for Verification System of DTV Contents (DTV 콘텐츠 검증 시스템을 위한 Java 컴파일러의 개발)

  • Son, Min-Sung;Park, Jin-Ki;Lee, Yang-Sun
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.1487-1490
    • /
    • 2007
  • 디지털 위성방송의 시작과 더불어 본격적인 데이터 방송의 시대가 열렸다. 데이터방송이 시작 되면서 데이터방송용 양방향 콘텐츠에 대한 수요가 급속하게 증가하고 있다. 하지만 양방향 콘텐츠 개발에 필요한 저작 도구 및 검증 시스템은 아주 초보적인 수준에 머물러 있는 것이 현실이다. 그러나 방송의 특성상 콘텐츠 상에서의 오류는 방송 사고에까지 이를 수 있는 심각한 상황이 연출 될 수 있다. 본 연구 팀은 이러한 DTV 콘텐츠 개발 요구에 부응하여, 개발자의 콘텐츠 개발 및 사업자 또는 기관에서의 콘텐츠 검증이 원활이 이루어 질수 있도록 하는 양방향 콘텐츠 검증 시스템을 개발 중이다. 양방향 콘텐츠 검증 시스템은 Java 컴파일러, 디버거, 미들웨어, 가상머신, 그리고 IDE 등으로 구성된다. 본 논문에서 제시한 자바 컴파일러는 양방향 콘텐츠 검증 시스템에서 데이터 방송용 자바 애플리케이션(Xlet)을 컴파일하여 에뮬레이팅 하거나 런타임 상에서 디버깅이 가능하도록 하는 바이너리형태의 class 파일을 생성한다. 이를 위해 Java 컴파일러는 *.java 파일을 입력으로 받아 어휘 분석과 구문 분석 과정을 거친 후 SDT(syntax-directed translation)에 의해 AST(Abstract Syntax Tree)를 생성한다. 클래스링커는 생성된 AST를 탐색하여 동적으로 로딩 되는 파일들을 연결하여 AST를 확장한다. 의미 분석과정에서는 확장된 AST를 입력으로 받아 참조된 명칭의 사용이 타당한지 등을 검사하고 코드 생성이 용이하도록 AST를 변형하고 부가적인 정보를 삽입하여 ST(Semantic Tree)를 생성한다. 코드 생성 단계에서는 ST를 입력으로 받아 이미 정해 놓은 패턴에 맞추어 Bytecode를 출력한다.ovoids에서도 각각의 점들에 대한 선량을 측정하였다. SAS와 SSAS의 직장에 미치는 선량차이는 실제 임상에서의 관심 점들과 가장 가까운 25 mm(R2)와 30 mm(R3)거리에서 각각 8.0% 6.0%였고 SAS와 FWAS의 직장에 미치는 선량차이는 25 mm(R2) 와 30 mm(R3)거리에서 각각 25.0% 23.0%로 나타났다. SAS와 SSAS의 방광에 미치는 선량차이는 20 m(Bl)와 30 mm(B2)거리에서 각각 8.0% 3.0%였고 SAS와 FWAS의 방광에 미치는 선량차이는 20 mm(Bl)와 30 mm(B2)거리에서 각각 23.0%, 17.0%로 나타났다. SAS를 SSAS나 FWAS로 대체하였을 때 직장에 미치는 선량은 SSAS는 최대 8.0 %, FWAS는 최대 26.0 %까지 감소되고 방광에 미치는 선량은 SSAS는 최대 8.0 % FWAS는 최대 23.0%까지 감소됨을 알 수 있었고 FWAS가 SSAS 보다 차폐효과가 더 좋은 것으로 나타났으며 이 두 종류의 shielded applicator set는 부인암의 근접치료시 직장과 방광으로 가는 선량을 감소시켜 환자치료의 최적화를 이룰 수 있을 것으로 생각된다.)한 항균(抗菌) 효과(效果)를 나타내었다. 이상(以上)의 결과(結果)로 보아 선방활명음(仙方活命飮)의 항균(抗菌) 효능(效能)은 군약(君藥)인 대황(大黃)의 성분(成分) 중(中)의 하나인 stilbene 계열(系列)의 화합물(化合物)인 Rhapontigenin과 Rhaponticin의 작용(作用)에 의(依)한 것이며, 이는 한의학(韓醫學) 방제(方劑) 원리(原理)인 군신좌사(君臣佐使) 이론(理論)에서 군약(君藥)이 주증(主症)에 주(主)로 작용(作用)하는 약물(藥物)이라는 것을 밝혀주는 것이라고

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

Advanced Improvement for Frequent Pattern Mining using Bit-Clustering (비트 클러스터링을 이용한 빈발 패턴 탐사의 성능 개선 방안)

  • Kim, Eui-Chan;Kim, Kye-Hyun;Lee, Chul-Yong;Park, Eun-Ji
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.105-115
    • /
    • 2007
  • Data mining extracts interesting knowledge from a large database. Among numerous data mining techniques, research work is primarily concentrated on clustering and association rules. The clustering technique of the active research topics mainly deals with analyzing spatial and attribute data. And, the technique of association rules deals with identifying frequent patterns. There was an advanced apriori algorithm using an existing bit-clustering algorithm. In an effort to identify an alternative algorithm to improve apriori, we investigated FP-Growth and discussed the possibility of adopting bit-clustering as the alternative method to solve the problems with FP-Growth. FP-Growth using bit-clustering demonstrated better performance than the existing method. We used chess data in our experiments. Chess data were used in the pattern mining evaluation. We made a creation of FP-Tree with different minimum support values. In the case of high minimum support values, similar results that the existing techniques demonstrated were obtained. In other cases, however, the performance of the technique proposed in this paper showed better results in comparison with the existing technique. As a result, the technique proposed in this paper was considered to lead to higher performance. In addition, the method to apply bit-clustering to GML data was proposed.

  • PDF

Research Trend and Futuristic Guideline of Platform-Based Business in Korea (플랫폼 기반 비즈니스에 대한 국내 연구동향 및 미래를 위한 가이드라인)

  • Namn, Su Hyeon
    • Management & Information Systems Review
    • /
    • v.39 no.1
    • /
    • pp.93-114
    • /
    • 2020
  • Platform is considered as an alternative strategy to the traditional linear pipeline based business. Moreover, in the 4th industrial revolution period, efficiency driven pipeline business model needs to be changed to platform business. We have such success stories about platform as Apple, Google, Amazon, Uber, and so on. However, for those smaller corporations, it is not easy to find out the transformation strategy. The essence of platform business is to leverage network effect in management. Thus platform based management can be rephrased as network management across the business functions. Research on platform business is popular and related to diverse facets. But few scholars cover what the research trend of the domain is. The main purpose of this paper is to identify the research trend on platform business in Korea. To do that we first propose the analytical model for platform architecture whose components are consumers, suppliers, artifacts, and IT platform system. We conjecture that mapping of the research work on platform to the components of the model will make us understand the hidden domain of platform research. We propose three hypotheses regarding the characteristics of research and one proposition for the transitional path from pipeline to platform business model. The mapping is based on the research articles filtered from the Korea Citation Index, using keyword search. Research papers are searched through the keywords provided by authors using the word of "platform". The filtered articles are summarized in terms of the attributes such as major component of platform considered, platform type, main purpose of the research, and research method. Using the filtered data, we test the hypotheses in exploratory ways. The contribution of our research is as follows: First, based on the findings, scholars can find the areas of research on the domain: areas where research has been matured and territory where future research is actively sought. Second, the proposition provided can give business practitioners the guideline for changing their strategy from pipeline to platform oriented. This research needs to be considered as exploratory not inferential since subjective judgments are involved in data collection, classification, and interpretation of research articles.

Effectiveness and Market Friendly Activation of Restricted Stock Units (RSUs) in the Early-Stage Startup Ecosystem: A Focus Group Interview (FGI) Approach (초기창업생태계를 위한 양도제한조건부주식(RSU)의 시장친화적인 활성화 방안: 전문가 포커스그룹인터뷰(이하 FGI)중심으로)

  • Hwangbo, Yun;Yang, Youngseok
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.4
    • /
    • pp.1-12
    • /
    • 2024
  • This paper aims to examine the effectiveness of Restricted Stock Units (RSUs) in attracting and retaining top talent for startups and venture companies in the context of their implementation in July 2024. The study investigates whether RSUs align with their original intent and identifies additional measures to enhance their effectiveness. Additionally, the paper explores strategies to actively adopt and revitalize RSUs in the business field from the perspectives of experts representing key market participants within the early-stage startup ecosystem in Korea. The study employs a three-pronged approach. First, a pre-study examines how RSUs overcome the limitations of existing stock compensation schemes, the benefits they offer, and the key conditions for ensuring market-friendly effectiveness. Second, experts involved in the RSU bill's early stages identify five issues that need to be addressed to ensure the bill's market-friendly effectiveness: RSU vesting conditions, RSU vesting targets, RSU vesting scope, RSU vesting timing, and RSU vesting-related tax benefits. Third, the study conducts an FGI with experts representing key market players in the early-stage startup ecosystem to examine the effectiveness and activation measures of the proposed RSU scheme, RSU adoption within the early-stage startup ecosystem minimizing conflict of interests with existing shareholders such as venture capital investor. Finally, experts emphasize the importance of clearly defining and communicating RSU benefits to businesses for effective RSU activation. This study's significance lies in its derivation of various insights from FGI research on the effective adoption and activation of RSUs within the early-stage startup ecosystem. Moreover, it is expected to provide a methodology for gauging opinion-gathering procedures for new bills introduced to foster startup and venture company growth.

  • PDF