• Title/Summary/Keyword: 노후 인젝터

Search Result 3, Processing Time 0.023 seconds

A Study on Spray Characteristics of Deteriorated Mechanical Injectors (노후 기계식 인젝터의 분무특성 연구)

  • Jeong, Minuk;Yu, Young Soo;Yang, Seungho;Choi, Minhoo;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.111-119
    • /
    • 2021
  • Deteriorated agricultural diesel engines using mechanical fuel injection systems have low fuel injection pressures. And they are not equipped with an exhaust gas abatement device, so it produces a lot of exhaust gas. Remanufactured used injectors can reduce emissions because spray characteristics are improved. In addition, remanufacturing is environmentally friendly and economical compared to producing new parts. For efficient injector remanufacturing, it is necessary to conduct a comparison experiment on the spray characteristics of an used mechanical injector and a new injector of the same model. In this study, the spray characteristics of the two injectors were compared by performing an injection quantity measurement and a spray visualization experiment. As a result, the used injector had a larger injection quantity, a shorter spray tip penetration, a wider spray angle and a smaller spray area than the new injector.

Study on the Characteristics of Exhaust Emissions in accordance with the Intake Manifold and Fuel Injector Maintenance of the Electronic Control Diesel Engine (전자제어 디젤엔진의 흡기 다기관 및 연료분사장치 정비에 따른 매연 배출특성에 관한 연구)

  • Kang, Hyun-Jun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.196-205
    • /
    • 2016
  • The exhaust gas discharged by cars not only threatens the health of the human body, but also contributes to global warming, due to the resulting increase in the concentrations of ozone, fine dust and carbon dioxide. Therefore, the government has steadily implemented careful inspection systems for exhaust emissions, in order to efficiently regulate the exhaust gas of cars. Studies on reducing the exhaust emissions of automobiles have been conducted in various fields, including ones designed to reduce the generation of HC, NOx, and $CO_2$ in the exhaust emission of vehicles. However, there have been insufficient studies on the reduction of the exhaust emission for old diesel vehicles. To develop careful inspection systems for the exhaust emissions of old diesel vehicles, studies on the reduction of the exhaust emissions and improvement of power are necessary by cleaning the carbon sediment in both the intake manifold and injector. Therefore, in this study, we analyzed and compared the amounts of gas emitted when simultaneously cleaning or not cleaning the intake manifold and injector of diesel automobiles with mileages over 80,000 km and operating periods over 5 years. The experimental results showed that in the case where the intake manifold and injector were simultaneously cleaned, there was a decline of 75.2% in the gas emission compared to the cases where only the manifold or injector is cleaned. Also, it was found that simultaneously cleansing the intake manifold and injector enabled the exhaust standard to be satisfied for less than 30% within 8.5 sec.

A Study on Waveform Analysis of Oxygen Sensor, Injector and Secondary Waveform through Emission Characteristics by a Decrepit Vehicle (노후 차량의 배기가스 측정을 이용한 산소센서, 인젝터, 점화2차파형의 파형분석 연구)

  • Yoo, Jongsik;Kim, Chulsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.151-156
    • /
    • 2013
  • The experiment was done on cars travelling at the speeds of 20km/h, 60km/h and 100km/h using the performance testing mode for chassis dynamometer. In this experiment, the relativity between the secondary waveform coming from ignition coil and exhaust emissions were measured in case of cars with failures, in oxygen sensor, spark plugs. The following results obtained by analysis of the relativity between the secondary waveform and exhaust emissions. 1) When the oxygen sensor is failure, the average value of CO emission measured was 6.8 times higher than the standard CO emission value and the average value of HC emission measured was 2.3 times higher than the standard emission level. 2) When engine parts are in failure, more fuel enters the cylinder due to longer opening duration of injector, and it tended to make CO and HC emission values increase. 3) Combustion duration, the shape of flame propagation during spark line, and the size of the discharge-induced energy were the three main elements that directly cause variations in CO and HC emission values.