• Title/Summary/Keyword: 노후 교량바닥판

Search Result 7, Processing Time 0.017 seconds

An Experimental Study on the Behaviour of Modular GFRP Deck for Use in Deteriorated Bridge Decks Replacement (노후교량 바닥판 대체용 Modular GFRP 바닥판 거동에 관한 실험 연구)

  • Ji, Hyo-Seon;Chunk, Kyung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.44-50
    • /
    • 2010
  • The behaviour of Modular GFRP(Glass Fiber Reinforced Polymers) decks for use in deteriorated bridge decks replacement are investigated experimentally in this study. As for the performance evaluation of bridge decks, experimental studies on the 3 test specimens with 1/5 scale of full size were carried out. Three specimens were sandwich plates with box tube cores. The constituents of bridge decks were glass fiber preforms and epoxy resin. The experimental results of all the specimens were summarized for maximum strength, stiffness and deformation capacity. A finite element analyses were compared to verify validity of experimental results.

  • PDF

An Experimental Study on Static Behaviors of Composite Sandwich Bridge Decks with Hybrid GFRP-Steel Core (하이브리드 GFRP-강재 심재를 갖는 복합샌드위치 교량바닥판의 정적거동에 관한 실험 연구)

  • Ji, Hyo-Seon;Chun, Kyung-Sik;Park, Dae-Yong;Son, Byung-Jik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.12-17
    • /
    • 2011
  • This paper presents the flexural behavior of a hybrid Glass Fiber-Reinforced Polymer(GFRP)-steel decks for use in deteriorated bridge decks replacement. Static load tests were conducted to investigate the structural characteristics of the hybrid FRP-steel deck. The tested deck panel satisfied the design criteria. The failure mode of the hybrid deck was demonstrated ductility with deformation beyond initial yielding. The responses were compared with the ANSYS finite element predictions. It was found that the presented hybrid deck was efficient for use in bridges. The thickness of the hybrid deck may be decreased when compared to that of the all FRP deck with similar flexural rigidity.

Evaluation on Flexural Performance of Precast Bridge Decks with Ribbed Connection (요철형 이음단면을 갖는 프리캐스트 교량 바닥판의 휨성능 평가)

  • Shin, Dong-Ho;Park, Se-Jin;Oh, Hyun-Chul;Kim, In-Gyu;Kim, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2015
  • Due to the increasing number of deteriorated bridges worldwide, the importance of maintenance and replacement of existing bridges are being emphasized. Cast-in-place concrete deck which is mainly applied to deck replacement of existing bridges have problems such as deterioration concerns by initial crack, labor cost increase, difficulties of maintenance and replacement, construction time increase, and indirect cost increase by traffic congestion. On the contrary, a precast concrete deck is considered as an effective alternative because of its quality assurance and accelerated construction. The connection method ensuring the required strength and durability is especially important, because the connection part of the precast concrete deck is vulnerable to cracks and leakage. Therefore, this study proposes precast bridge decks with ribbed connection which are more improved than existing bridge deck joints, and flexural performance is verified through various parameter tests.

Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges (RC 슬래브교의 신축이음 손상과 바닥판 응답과의 상관관계 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.245-253
    • /
    • 2021
  • RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.

Prediction of Crack Distribution for the Deck and Girder of Single-Span and Multi-Span PSC-I Bridges (단경간 및 다경간 PSC-I 교량의 바닥판 및 거더의 균열분포 예측)

  • Hyun-Jin Jung;Hyojoon An;Jaehwan Kim;Kitae Park;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.102-110
    • /
    • 2023
  • PSC-I girder bridges constitute the largest proportion among highway bridges in Korea. According to the precision safety diagnosis data for the past 10 years, approximately 41.3% of the PSC-I bridges have been graded as C. Furthermore, with the increase in the aging of bridges, preemptive management is becoming more important. Damage and deterioration to the deck and girder with a long replacement cylce can have considerable impacts on the service and deterioration of a bridge. In addition, the high rate of device damages, including expansion joints and bearings, necessitates an investigation into the influence of the device damage in the structural members of the bridge. Therefore, this study defined representative PSC-I girder bridges with single and multiple spans to evaluate heterogeneous damages that incorporate the damage of the bridge member and device with the deterioration of the deck. The heterogeneous damages increased a crack area ratio compared to the individual single damage. For the single-span bridge, the occurrence of bearing damage leads to the spread of crack distribution in the girder, and in the case of multi-span bridges, expansion joint damage leads to the spread of crack distribution in the deck. The research underscores that bridge devices, when damaged, can cause subsequent secondary damage due to improper repair and replacement, which emphasizes the need for continuous observation and responsive action to the damages of the main devices.

Economic Analysis of Concrete Panel Replacement of PSC Bridge with Embedded Demountable Shear Connector (매립형 분리식 전단연결재를 적용한 PSC교 콘크리트 바닥판 교체공사의 경제성 분석)

  • Soon-Hwan, Lee;Jong-Eon, Kim;Jae-Gyu, Kim;Se-Hyun, Park;Dae-Sung, Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.376-385
    • /
    • 2022
  • The embedded demountable shear connector was developed in preparation for replacement works due to deterioration and damage to the bridge panel of the PSC girder bridge which is a road infrastructure directly related to the safety and convenience of the people. The demountable shear connector minimizes crushing works in the demolition process of the panel, and it is easy to re-construct the shear connector for replacement work. The economic feasibility of the PSC girder bridge using the embedded demountable shear connector compared to the existing construction method was analyzed from the perspective of road users (people) by calculating and comparing the cost of road users caused by traffic blocking during each construction method.

Analysis of Structural Safety for Rebar Exposure and Corrosion in PSC I-Girder Bridge Slab (PSC I형 교량 바닥판의 철근노출 및 부식에 대한 구조적 안전성 분석)

  • Han, Manseok;Park, Ju-Hyun;Lee, Jong-Han;Min, Jiyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • This paper evaluated the structural safety of an aging PSC I-girder bridge with rebar corrosion in the deck. The geometry and rebar of the bridge were designed based on an actual PSC I-girder bridge, and the numerical analysis was performed considering the crack of concrete and yielding of steel rebar. According to the evaluation criteria of Korea Infrastructure Safety and Technology Corporation, this study defined two criteria of rebar exposure and corrosion rates to construct a total of 32 corrosion scenarios. Rebar exposure was defined as the exposure of tensile rebars in the bridge deck due to the removal of cover concrete. The results of the analysis showed that the safety and rating factors of the bridge decreased with increasing rebar exposure and corrosion rates. For the rebar corrosion rate more than 50%, the safety grade of the bridge should be carefully evaluated for all the rebar exposure rate. When the rebar corrosion rate exceeds 57%, the bridge was evaluated as E grade regardless of rebar exposure rate. A correlation analysis for a 2% of rebar exposure rate found that the bridge was evaluated as A grade up to 55.8% corrosion rate, C grade up to 56.9%, D grade up to 58.5%, and E grade for corrosion rate greater than 58.5%. This study indicates the necessity of a quantitative evaluation of rebar corrosion for evaluating the structural safety of aging bridges.