• Title/Summary/Keyword: 노치 결함

Search Result 152, Processing Time 0.018 seconds

Changes in Organic and Inorganic Nutrients in Terminal Shoots of 'Fuyu' Persimmon during Spring Growth (감나무 정단신초의 봄 생장 동안 유기 및 무기 양분의 변화)

  • Yoon, Young-Whang;Choi, Seong-Tae;Park, Doo-Sang;Rho, Chi-Woong;Kim, Dae-Ho;Kang, Seong-Mo
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • To understand changes in composition and distribution of nutrients during early shoot growth of persimmon, organic compounds and inorganic elements of terminal shoots were analyzed for about 40 days from the time of foliation. Sample shoots were collected from mature 'Fuyu' trees for this three-year experiment and they were divided to stem, leaves, and the fruits including flower buds at the earliest stage. During shoot growth, concentration of soluble sugars increased in both leaves and fruits, but that of starch increased only in leaves. Those of amino acids tended to decrease in all the parts but there was no consistent change in proteins. As shoots grew, contents of all the organic compounds in a shoot increased, and they were especially higher in May leaves accounting for more than 60% of the shoot total for each nutrient. Along with shoot growth, concentrations of N and P gradually decreased in all three parts, while K decreased only in stem. However, those of Ca and Mg did not show notable changes in all the parts with wide variations depending on the year. Due to the quantitative increase in growth, contents of inorganic elements in a shoot increased in all the parts and the leaves accounted for 54-82% of the shoot total. At the cessation time of extension growth, a shoot contained 526-768 mg of soluble sugars, 245-844 mg of starch, 26-31 mg of amino acids, and 66-103 mg of proteins for three years. On the other hand, a shoot contained 203-388 mg of K, the greatest among the inorganic elements, followed by 132-159 mg of N. Changes of the nutrients in a shoot were much greater during the earlier stage of growth after foliation than during the later stage toward growth cessation, suggesting the importance of mobilizing reserve nutrients for the early growth of the shoots. The results of this study also suggested that the rate of nutrient changes, especially during the earlier stage of shoot growth, could be affected by environmental and cultural conditions.

Development of n Hydroponic Technique for Fruit Vegetables Using Synthetic Fiber Medium (합성섬유 배지를 이용한 과채류 수경재배 기술 개발)

  • Hwang Yeon-Hyeon;Yoon Hae-Suk;An Chul-Geon;Hwang Hae-Jun;Rho Chi-Woong;Jeong Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.106-113
    • /
    • 2005
  • This study was carried out to develop a novel hydroponic medium far fruit vegetable crops by using waste synthetic fibers. In physical analysis of the synthetic fiber medium (SFM), the bulk density and percent solid phase were lower, while the porosity and water content were greater in comparison with the rockwool slab. The SFM had pH of 6.5 and EC of $0.03dS{\cdot}m^{-1}$ both of which are similar to those of the rockwool slab. The CEC of 0.39me/100mL of the SFM was lower than compared with 3.29me/100mL of the rockwool slab. However, concentrations K, Ca, Mg and Na were slightly higher in the SFM than those in the rockwool slab. The 'Momotaro' tomato crop in the SFM gave comparable plant height, stem diameter, days to first flowering, fruit weight and percent marketable yield as the rockwool slab. In the SFM and in the rockwool slab, mean fiuit weight were 182g and 181g, percent marketable yield were $93.8\%$ and $92.0\%$, respectively. The marketable yield per 10a in the SFM was 12,799 kg, which was $97\%$ of that in the rockwool slab. Growth parameters such as leaf length and width, leaf number, stem diameter and chlorophyll content of an exportable cucumber crop grown in the SFM and the rockwool slab were not different. Fruit weight was greater in the rockwool slab, while percent marketable yield was greater in the SFM. The marketable fruit yield per 10a of 5,062kg in the SFM was $2\%$ greater than that in the rockwool slab. $NO_3$ concentration in nutrient solution during the crop cultivation was higher in the SFM than in the rockwool slab, while concentrations $NH_4$, K, Ca, Mg and $SO_4$ were not different between the two media.