• Title/Summary/Keyword: 노즐 직경 영향

Search Result 77, Processing Time 0.023 seconds

Study of the Shock Structure of Supersonic, Dual, Coaxial, Jets (초음속 이중 동축 제트유동에서 발생하는 충격파 구조에 관한 연구)

  • 이권희;이준희;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.94-101
    • /
    • 2001
  • The shock structure of dual coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure on the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number 2.0 and 3.0 are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 1.0 and 10.0, and the assistant jet ratio from 1.0 to 4.0. The results show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter.

  • PDF

Thrust performance at the various pintle shapes and positions (핀틀 형상 및 위치에 따른 추력 성능)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Jang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.89-93
    • /
    • 2008
  • The effect of pintle shapes and position to the thrust performance of Solid Rocket Motor was studied by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS in Fluent, Spalart-Allmaras model was better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. When nozzle throat area was decreased, magnitude of thrust was increased. The bigger pintle size was, the more thrust of pintle tip pressure was obtained. Meanwhile the more thrust of nozzle and chamber pressure decreased. Hence, total thrust of big pintle was less than a small pintle under same throat area condition.

  • PDF

Experimental Study on the Heat Transfer and Turbulent Flow Characteristics of Jet Impinging the Non-isothermal Heating Plate (비균일 온도분포를 갖는 평판에 대한 충돌제트의 열전달 및 난류유동특성에 관한 연구)

  • 한충호;이계복;이충구;이창우
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.272-277
    • /
    • 2001
  • An experimental study of jet impinging the non-isothermal heating surface with linear temperature gradient is conducted with the presentation of the turbulent flow characteristics and the heat transfer rate, represented by the Nusselt number. The jet Reynolds number ranges from 15,000 to 30,000, the temperature gradient of the plate is 2~4.2$^{\circ}C$/cm and the dimensionless nozzle to plate distance (H/D) is from 2 to 10. The results show that the peak of heat transfer rate occurs at the stagnation point, and the heat transfer rate decreases as the radial distance from the stagnation point increases. A remarkable feature of the heat transfer rate is the existence of the second peak. This is due to the turbulent development of the wall jet. Maximum heat transfer rate occurs when the axial distance from the nozzle to nozzle diameter (H/D) is 6 or 8. The heat transfer rate can be correlated as a power function of Prandtl number, Reynolds number, the dimensionless nozzle to plate distance (H/D) and temperature gradient (dT/dr). It has been found that the heat transfer rate increases with increasing turbulent intensity. The wall jet is influenced by temperature gradient and the effect becomes more important at higher radii.

  • PDF

A Study on the Flow Entrainment Characteristics of a Coaxial Nozzle Used in a MILD Combustor with the Change of Nozzle Position and Flow Condition (MILD 연소로에서 노즐의 위치와 유동 조건에 따른 유입량 특성에 관한 연구)

  • Shim, Sung-Hoon;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • A MILD (Moderate and Intense Low oxygen Dilution) combustor decreases NOx formation effectively during the combustion process and NOx formation is affected significantly by the exhaust gas entrainment rate toward fuel and air. The present study focused on the new MILD combustor, which has coaxial cylindrical tube. The outside tube of the new MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. The connection pipe is set between the outer side and the inner side tubes and coaxial air nozzle is inserted at the center of the connection pipe. A numerical analysis is accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of air nozzle exit velocity, nozzle diameter, nozzle exit position and exhaust gas side pressure. The entrainment rate is proportional to the square root of air nozzle exit velocity and negatively proportional to the pressure difference between the exhaust gas side and furnace side pressures. The effect of air nozzle exit position is not considerable on the exhaust gas entrainment.

Effect of Orifice Geometry on Flow Characteristics of Liquid Jet from Single Hole Nozzle (오리피스 형상에 따른 단공노즐 액체제트의 유동특성)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.19-28
    • /
    • 2017
  • Effects of cavitation and hydraulic flip in circular and elliptical nozzles on the flow characteristics have been studied. Spray tests were conducted using injectors with different ratios of an orifice length(L) to a diameter(d) and of a major axis diameter(a) to a minor axis diameter(b). With the increment of an injection pressure drop, discharge coefficients slightly decreased in cavitation flows, and those suddenly dropped and were almost constant in hydraulic flip flows. For elliptical nozzles with L/b > 8 and L/a < 8, discharge coefficients and flow patterns showed different results from those in previous circular nozzles. When a flow in the elliptical nozzle was under steady condition, as the liquid column went downstream from the nozzle, its spray angle a little decreased in the plane of a major axis and increased in the plane of a minor axis.

An Experimental Study on Design and Starting Characteristics of a Sub-scale Diffuser for Simulating High-Altitude Environment (고고도 환경 모사용 축소형 디퓨저 설계 및 시동특성 연구)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Yang, Jae-Jun;Kim, Sun-Jin;Kim, Jung-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.21-28
    • /
    • 2009
  • This experimental study was performed to find the important design parameters and the starting characteristics of a supersonic exhaust diffuser. The experimental study was carried out on a scaled down model of straight cylindrical supersonic exhaust diffuser, in order to evaluate the effects of operating fluid(air, nitrogen), the diffuser inlet area over the primary nozzle throat area($A_d/A_t$), the inlet pressure of primary nozzle, diffuser length over diffuser inner diameter($L_d/D_d$) and existence or nonexistence of diffuser divergence. The test results showed that the starting pressure increased with decrease in diameter of primary nozzle, and the measured starting pressure of the diffuser had approximately 90~98% efficiency as compared with the predicted starting pressure. Also, the diffuser was started at all case, regardless of $L_d/D_d$ (above 8.4) and diffuser divergence. The result of this study can be used as an essential database for developing a simulated high-altitude facility for real-scale model.

The influence of co-axial air flow on the breakup length of a smooth liquid jet (平滑流의 分裂길이에 미치는 同軸氣流의 영향)

  • 김덕줄;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1390-1398
    • /
    • 1988
  • The purpose of this study was experimentally to investigate the disintegration process and disintegration mechanism when co-axial air flows vertically for the longest smooth liquid jet. These were affected by liquid velocity, air velocity, air-to-liquid diameter ratio, nozzle shape, and air-liquid contacting position. That is, this process of disintegration of the liquid jet was similar to that occurred when liquid pressure was increased. At Reynolds number of 10, 000 and below, the changes in the breakup length represent different tendency according to liquid flow rate. The influence of air flow on the disintegration of liquid jet was different according to air-to-liquid diameter ratio, air orifice diameter, nozzle shape and contacting position of liquid and air. In particular, when the tip of liquid nozzle was inside the air orifice, the effect of air flow was the larger than outside the air orifice. The effect of liquid mass flow rate on the change rate of the breakup length was also different.

Influence of Ultra-high Injection Pressure and Nozzle Hole Diameter on Diesel Flow and Spray Characteristics under Evaporating Condition (증발 조건에서 초고압 분사와 노즐 홀 직경이 디젤 유량 및 분무 특성에 미치는 영향에 대한 연구)

  • Cho, Wonkyu;Park, Youngsoo;Bae, Choongsik;Yu, Jun;Kim, Youngho
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • Experimental study was conducted to investigate the effects of ultra-high injection pressure and nozzle hole diameter on diesel flow and spray characteristics. Electronically controlled ultra-high pressure fuel injection system was made to supply the fuel of ultra-high pressure consistently. Three injection pressures, 80, 160, and 250MPa were applied. Four type of injectors with identical eight nozzle holes were used. The four injectors have nozzle hole diameters of 115, 105, 95, and $85{\mu}m$ respectively. Injection quantity and rate were measured to investigate flow characteristics according to injection pressures and nozzle hole diameters. Mie-scattering and shadowgraph were performed to visualize liquid and vapor phases of diesel spray in a constant volume combustion chamber (CVCC). Ambient conditions of high pressure and high temperature in a diesel engine were simulated by using CVCC.

A study on the boiling heat flux on high temperature surface by impinging water jet (衝突水噴流에 의한 高溫面의 沸騰熱流束에 관한 硏究)

  • Lee, Ki-Woo;Kim, Yoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.81-94
    • /
    • 1988
  • A series of experiments was performed in this study to investigate the boiling heat flux between an impinging water jet and a hot surface. Test variables were surface roughness, jet velocity, saturation temperature excess of surface, nozzle diameter and the gap distance between nozzle plate and the hot surface. In order to make the impinged cooling water a forced flow streaming a long the hot surface immediately after the initial impingement, the flat nozzle tip was extended to a circular flat plate having the same diameter as the hot surface. Utilizing the dimensionless parameter study on continuity, momentum and energy equations, 5 groups of variables involved in the nucleate boiling heat transfer were derived so that it is possible to estimate the increased heat flux by impinging water jet in a similar experimental work. For the case of saturated water being impinging onto a high temperature surface, an applicable correlation among dimensionless parameters describing the heat flux was found to be as follow.

Effects of Inlet Shapes of Critical Sonic Nozzles on Discharge Coefficients (임계음속노즐의 입구형상이 유출계수에 미치는 영향)

  • 박경암
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.701-706
    • /
    • 1994
  • The discharge coefficients of critical sonic nozzles were obtained in a high pressure gas flow standard system, which was a gravitational weighing system. The discharge coefficients of critical sonic nozzle farbricated according to ISO specifications are in good agreement with ISO correlation. The discharge coefficients for small inlet radius decrease significantly as the inlet length become short due3 to separation at the sharp-edged inlet. For nozzles having long inlet radius, the effects of inlet length on the discharge coefficients were relatively small, but the effects become significant at the short inlet length. The effect of separation at the sharp-edged inlet is stronger than that of the boundary layer growth. The experimental results support that the shape of critical sonic nozzles suggested by ISO specifications is excellent.