주노즐내의 공기제트의 효율을 높이기 위해, 주노즐 제트 속도는 높을수록 높은 마찰력을 초래 하여 위사의 속도를 증가시킨다. 가속관의 길이가 증가하면 노즐출구에서의 공기의 속도와 난 류가 감소하며; 가속관의 직경이 증가할 때에는 공기속도가 감소하며 난류는 증가한다. 탱크압력, 가속관의 길이 등 유동조건에 따라 유동은 니들 끝과 가속관 출구에서 이중 초크(M=1)가 발 생할 수 있다. 에어가이드 직경과 노즐직경의 그 비율이 클수록 제트에 의한 유동의 비말동 반(entrainment)이 크게 된다. 실제 노즐직기내의 유동은 위사를 동반한 유동이므로 위와 같은 정성적인 설명에 위사의 물성치에 따른 고려를 반드시 하여야만 한다. 현장에서의 노즐설계는 노즐형상 자체의 영향은 물론 각종 위사의 물성치에 맞는 압축공기 압력 최적조건이 무엇인가를 찾는 일도 매우 중요하다.
Journal of Korean Society of Environmental Engineers
/
v.30
no.9
/
pp.948-954
/
2008
Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2016.05a
/
pp.88-89
/
2016
선택적 환원 촉매(SCR : Selective Catalytic Reduction) 시스템은 대기오염을 예방하기 위한 배기가스 처리장치 중 하나이다. 본 연구에서는 전산유체역학(CFD : Computational Fluid Dynamics)를 사용하여 SCR 시스템 의 효율향상을 위하여 ANSYS-CFX package를 이용하여 점성 유동 해석을 수행하였다. SCR 시스템의 점성 유동 흐름의 전산 유체 역학을 이용하여 시뮬레이션하기 위하여 Navier-Stokes 방정식을 지배방정식으로 사용하였다. CATIA V5를 사용하여 SCR 시스템의 형상을 3D 모델링을 하였고, 암모니아와 배기가스의 혼합 비율을 확인하기 위해 요소수 분사 노즐의 위치를 변경하였다. 요소수 분사 노즐은 배기관의 입구로부터 1/3, 1/2, 2/3에 위치한다. 또한, 분사 노즐의 위치가 배기관 입구의 1/3에 위치할 때 노즐의 분사구수에 따른 효율을 확인하기 위하여 분사구수를 4Hole, 6Hole, 8Hole일 경우를 확인하여 비교하였다. 시뮬레이션의 결과로는 배기관 입구에 가까울수록, 분사구수가 많을수록 효율이 좋아짐을 확인하였다.
Design of velocity-compounded turbine for 75ton class LRE turbopump application and pressure compounded turbine for 30ton class LRE turbopump has been performed. 1D calculation and CFD analysis were conducted in determining blade and flow passage shape of velocity compounded turbine iteratively. Finally, 23.1% improved specific power and 5% reduced weight turbine to the original design was developed. In case of pressure-compounded supersonic turbine design, rotational speed was increased by 50% and the effect of carryover ratio, 2nd nozzle installation angle, leakage flow of 2nd nozzle, and work sharing factor was studied. Final 1D design resulted 36% increased specific power and 51% reduced weight comparing to the original single-row impulse turbine. It is anticipated that nozzle flow path design will be very important for the accomplishment of expected performance of pressure-compounded turbine and nozzle shape optimization will be conducted through the CFD analysis.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.37
no.5
/
pp.476-482
/
2009
The effect of pintle shape on the thrust level of pintle-nozzle Solid Rocket Motor(PNSRM) was studied numerically using the Spalart-Allmaras turbulent model of Fluent. Mass flow rate of PNSRM was always less than theoretical value and the extent of decrease in mass flow rate grew in the large pintle because of increase in the relative boundary layer thickness between pintle body and nozzle wall. The bigger pintle size was, the more thrust of pintle tip pressure was obtained. Meanwhile the more thrust of nozzle and chamber pressure decreased. Hence, total thrust of big pintle was less than a small pintle under same throat area condition. Specific impulse was relatively flat for all pintle shape.
Journal of the Korean Society of Propulsion Engineers
/
v.21
no.5
/
pp.61-70
/
2017
Robust thrust distribution method of solid DACS is researched. For the case of the system which has higher number of actuation nozzles than the degree of freedom of thrust to be controlled, the robust thrust allocation law which accommodate the abnormal operation is suggested. Assuming the situation that some nozzles are uncontrollable, the error between nozzle throat area command and response can be calculated. The error is used for realtime reshaping of weighting matrix. From the weighting effect, the nozzle which operated abnormally has low responsibility for the command then, the thrust error is reduced. The suggested algorithm is verified by the simulation of abnormal operation condition of DCS and ACS nozzle respectively.
A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.
This research was carried out to find out spray characteristics of 3 types of spray nozzle to be used for greenhouse cooling. Following results were obtained from this experimental study. Water amounts sprayed with each nozzle were increased with the spraying pressure. However the increment of sprayed amount with the increase of spraying pressure were not consistent regardless of nozzle types. For the whole tested spraying pressures of nozzle-type I, II, III, the minimum droplet sizes were about 1.7~2.5$\mu$m, 1.7~2.2$\mu$m and 1.7~2.2$\mu$m, respectively, and the maximum droplet sizes were about 44~60$\mu$m, 52~71$\mu$m and 45~61$\mu$m, respectively, and the average droplet sizes were about 23~38$\mu$m, 19~24$\mu$m and 17~25$\mu$m, respectively The most appropriate spraying pressures of nozzle-type I, II, III were analyzed to be 70kgf/$\textrm{cm}^2$, 30kgf/$\textrm{cm}^2$ and 30kgf/$\textrm{cm}^2$, respectively, and their sprayed amounts were about 124mL/min, 103mL/min and 84mL/min, respectively, and average droplet sizes were 22.6$\mu$m, 21.8$\mu$m and 20.6$\mu$m, respectively. Also, with the order of nozzle-type I, II, III, droplet size distributions less than 30$\mu$m were 95.4%, 85.7% and 79.0%, respectively, and the distributions larger than 40$\mu$m were 0.2%, 1.28% and 1.67%, respectively. However most all of the droplet size were less than 50$\mu$m.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2008.11a
/
pp.353-356
/
2008
The effects of design parameters of supersonic ejector system under the assumption of constant pressure mixing; such as mass flow rate ratio, area ratio, Primary mach number on ejector system performance were investigated by theoretical formulations. And for a given design condition and working fluid, Computational Fluid Dynamics was conducted.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.