• Title/Summary/Keyword: 노이즈 제거

Search Result 608, Processing Time 0.032 seconds

Adaptive Non-Local Means Denoising Algorithm Using Down-Scaled Images (다운 스케일 영상을 이용한 적응적인 비국부 평균 노이즈 제거 방식)

  • Nguyen, Tuan-Anh;Kim, Dong Young;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.55-57
    • /
    • 2015
  • This paper presents an adaptive non-local means denoising algorithm using down-scaled images. This work provides a method to reduce artifacts and information loss around context region by increasing the number of similar patches for high activity region with down-scaled images. Experimental results demonstrate that the proposed algorithm outperforms the non-local means algorithm more than 1.5 (dB).

The Removal of Noisy Bands for Hyperion Data using Extrema (극단화소를 이용한 Hyperion 데이터의 노이즈 밴드제거)

  • Han, Dong-Yeob;Kim, Dae-Sung;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.275-284
    • /
    • 2006
  • The noise sources of a Hyperion image are mainly due to the atmospheric effects, the sensor's instrumental errors, and A/D conversion. Though uncalibrated, overlapping, and all deep water absorption bands generally are removed, there still exist noisy bands. The visual inspection for selecting clean and stable processing bands is a simple practice, but is a manual, inefficient, and subjective process. In this paper, we propose that the extrema ratio be used for noise estimation and unsupervised band selection. The extrema ratio was compared with existing SNR and entropy measures. First, Gaussian, salt and pepper, and Speckle noises were added to ALI (Advanced Land Imager) images with relatively low noises, and the relation of noise level and those measures was explored. Second, the unsupervised band selection was performed through the EM (Expectation-Maximization) algorithm of the measures which were extracted from a Hyperion images. The Hyperion data were classified into 5 categories according to the image quality by visual inspection, and used as the reference data. The experimental result showed that the extrema ratio could be used effectively for band selection of Hyperion images.

Image Optimization of Fast Non Local Means Noise Reduction Algorithm using Various Filtering Factors with Human Anthropomorphic Phantom : A Simulation Study (인체모사 팬텀 기반 Fast non local means 노이즈 제거 알고리즘의 필터링 인자 변화에 따른 영상 최적화: 시뮬레이션 연구)

  • Choi, Donghyeok;Kim, Jinhong;Choi, Jongho;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.453-458
    • /
    • 2019
  • In this study we analyzed the tendency of the image characteristic by changing filtering factor for the proposed fast non local means (FNLM) noise reduction algorithm with designed Male Adult mesh (MASH) phantom through Geant4 application for tomographic emission (GATE) simulation program. To accomplish this purpose, MASH phantom for human copy was designed through the GATE simulation program. In addition, we acquired degraded image by adding Gaussian noise with a value of 0.005 using the MATALB program in MASH phantom. Moreover, in degraded image, the FNLM noise reduction algorithm was applied by changing the filtering factors, which set to 0.005, 0.01, 0.05, 0.1, 0.5, and 1.0 value, respectively. To quantitatively evaluate, the coefficient of variation (COV), signal to noise ratio (SNR), and contrast to noise ratio (CNR) were calculated in reconstructed images. Results of the COV, SNR and CNR were most improved in image with a filtering factor of 0.05 value. Especially, the COV was decreased with increasing filtering factor, and showed nearly constant values after 0.05 value of the filtering factor. In addition, SNR and CNR were showed that improvement with increasing filtering factor, and deterioration after 0.05 value of the filtering factor. In conclusion, we demonstrated the significance of setting the filtering factor when applying the FNLM noise reduction algorithm in degraded image.

Silhouette Denoising for the Stone Cultural Heritages (석탑 문화재의 실루엣 추출을 위한 노이즈 제거)

  • Kim, Hak-Ran;WhangBo, Taek-Keun
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.381-388
    • /
    • 2009
  • This paper proposes a denoising method for the contour edges and crease edges of silhouette obtained from 3D scanned data of stone cultural heritages. It is often the case that the silhouette involves noise in the form of short-length line segments, due to rough surfaces of stone cultural heritages, weathering, and technical difficulties arising in data acquisition. Thus the removal of the short-length line segments from the contour edges and crease edges can result in a clear and accurate silhouette. An efficient computational algorithm is introduced to count the continuity of line segments; edges having not more than 3 line segments are removed. It has been verified that the new method is more effective than threshold-based silhouette extraction methods for stone heritages. Our method is applicable for various other data which are deteriorated by short-length line segments.

  • PDF

Automatic Boundary Detection from 3D Cloud Points Using Color Image (칼라영상을 이용한 3차원 점군데이터 윤곽선 자동 검출)

  • Kim, Nam-Woon;Roh, Yi-Ju;Jeong, Hee-Seok;Jeong, Joong-Yeon;Jung, Kyeong-Hoon;Kang, Dong-Wook;Kim, Ki-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.141-142
    • /
    • 2008
  • 본 논문은 텍스처된 3차원 점군데이터를 효율적으로 모델링하는 방법을 제안한다. 지상라이다로부터 획득한 3차원 점군데이터는 많은 노이즈를 가지고 있으며 이로 인해 자동적인 모델링이 어렵다. 3차원 모델링에 있어서 메쉬를 생성해야 3차원 랜더링이 가능하지만 3차원 메쉬 생성은 노이즈에 취약하기 때문에 디자이너들이 수작업으로 노이즈를 제거해야만 한다. 하지만 노이즈 자제가 지상 라이다로부터 들어온 데이터이기 때문에 자동적인 노이즈 제거가 어렵다. 본 논문에서는 텍스처된 지상 라이다 데이터로부터 칼라 영상의 정보를 이용한 윤곽선 정보 검출 방법을 제안한다. 대부분의 건물과 같은 구조물에서 최 외곽은 같은 색의 정보를 가지고 있다. 최 외곽 칼라의 정보를 이용하여 칼라 정보의 변화를 제한하고, 유사 칼라 정보를 가지고 있는 픽셀만 얻어냄으로써 최외각 정보를 얻어낸다. 칼라 이미지를 이용만 필터링 된 점군데이터는 xy, xz, yz 각각의 평면에서 윤곽선 데이터를 가지며 이는 구조물에 대한 모델링의 속도를 빠르게 해준다.

  • PDF

A study on non-local image denoising method based on noise estimation (노이즈 수준 추정에 기반한 비지역적 영상 디노이징 방법 연구)

  • Lim, Jae Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.518-523
    • /
    • 2017
  • This paper proposes a novel denoising method based on non-local(NL) means. The NL-means algorithm is effective for removing an additive Gaussian noise, but the denoising parameter should be controlled depending on the noise level for proper noise elimination. Therefore, the proposed method optimizes the denoising parameter according to the noise levels. The proposed method consists of two processes: off-line and on-line. In the off-line process, the relations between the noise level and the denoising parameter of the NL-means filter are analyzed. For a given noise level, the various denoising parameters are applied to the NL-means algorithm, and then the qualities of resulting images are quantified using a structural similarity index(SSIM). The parameter with the highest SSIM is chosen as the optimal denoising parameter for the given noise level. In the on-line process, we estimate the noise level for a given noisy image and select the optimal denoising parameter according to the estimated noise level. Finally, NL-means filtering is performed using the selected denoising parameter. As shown in the experimental results, the proposed method accurately estimated the noise level and effectively eliminated noise for various noise levels. The accuracy of noise estimation is 90.0% and the highest Peak Signal-to-noise ratio(PSNR), SSIM value.

Noise Using Wavelet Pattern Change of Real-time Ultrasound Image (실시간 초음파 영상의 웨이블릿 패턴 변화를 이용한 노이즈 제거)

  • Cho, Young-bok;Woo, Sung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.510-512
    • /
    • 2018
  • The proposed method enhances the resolution of images by removing noise using wavelet transform to remove noise from images generated by ultrasound diagnosis. We propose an algorithm to reduce the speckle noise and enhance the edge of the ultrasound image. The proposed algorithm can enhance edges of various sizes by using wavelet transform which can use both frequency and spatial information. Experimental results show that the performance of the algorithm for noise reduction of ultrasound images is about 0.45ms for $520{\times}440$ images.

  • PDF

Noise Band Extraction of Hyperion Image using Quadtree Structure and Fractal Characteristic (Quadtree 구조 및 프랙탈 특성을 이용한 Hyperion 영상의 노이즈 밴드 추출)

  • Chang, An-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.489-495
    • /
    • 2010
  • Hyperspectral imaging obtains information with a wider wavelength range a large number of bands. However, a high correlation between each band, computation cost, and noise causes inaccurate results in cases of no pre-processing. The noises of band extraction and elimination positively necessary in hyperspectral imaging. Since the previous studies have used a characteristic the whole image, a local characteristic of the image is considered for the noise band extraction. In this study, the Quadtree, which is a data structure algorithm. and the fractal dimension are adopted for noise band extraction in Hyperion images. The fractal dimensions of the segments divided by the Quadtree structure are calculated, and variation is used. We focused on the extraction of random noise bands in Hyperion images and compared them with the reference data made by visual decisions. The proposed algorithm extracts the most bands, including random noises. It is possible to eliminate more than 30 noise bands, regardless of images.

Reconstruction of Facial Image Utilizing SVDD based Denoising Method (SVDD 기반 노이즈 제거 기법을 이용한 얼굴 영상의 복원)

  • Kang, Dae-Sung;Kim, Jong-Ho;Park, Joo-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2903-2905
    • /
    • 2005
  • 많은 경우, 부분 손상된 얼굴 영상을 복원해야 할 필요가 있다. 대표적인 예로는 감시카메라에 찍힌 범인의 얼굴 영상이 이에 속한다. 이런 경우 얼굴의 중요한 부분이 가려져 있기 때문에 자동 얼굴 인식 시스템이나 사람의 관찰로는 그 부분을 인식하기는 매우 어렵다. 이 논문에서는 어려움을 극복하기 위해 새롭게 개발된 SVDD기반 노이즈 제거 기법을 부분 손상된 얼굴 영상에 적용한 문제를 고려해 보았다.

  • PDF

Background modeling and Application for Real-time Surveillance (실시간 감시 시스템을 위한 배경 모델링과 응용)

  • 최정훈;조정현;김승호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.781-783
    • /
    • 2004
  • 본 논문에서는 실외 환경의 실시간 감시 시스템에 응용할 배경 모델링을 설계 구현한다. 일반적인 감시 시스템은 배경 모델링, 오브젝트 검출, 그리고 오브젝트 추적으로 나뉜다. 실시간으로 배경 모델링과 갱신을 수행하고 객체를 추적하기 위해서는 연산 시간이 적어야하며 노이즈 제거를 수행해야 한다. 노이즈 제거를 위하여 메디안 검출 방법을 이용하고 있으나 정렬 시간이 많은 문제점이 있다. 본 논문에서는 윈도우 기반의 러닝 윈도우 리스트 (running window list)를 제안하여 메디안 정렬 시간을 최소화하고 실시간으로 배경 모델링과 배경 갱신을 수행하는 방법을 제안한다.

  • PDF