• Title/Summary/Keyword: 노이즈 제거

Search Result 608, Processing Time 0.026 seconds

Curved Feature Modeling and Accuracy Analysis Using Point Cloud Data (점군집 데이터를 이용한 곡면객체 모델링 및 정확도 분석)

  • Lee, Dae Geon;Yoo, Eun Jin;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • LiDAR data processing steps include noise removal, filtering, classification, segmentation, shape recognition, modeling, and quality assessment. This paper focuses on modeling and accuracy evaluation of 3D objects with curved surfaces. The appropriate modeling functions were determined by analyzing surface patch shape. Existing methods for modeling curved surface features require linearization, initial approximation, and iteration of the non-linear functions. However, proposed method could directly estimate the unknown parameters of the modeling functions. The results demonstrate feasibility of the proposed method. The proposed method was applied to the simulated and real building data of hemi-spherical and semi-cylindrical surfaces. The parameters and accuracy of the modeling functions were estimated. It is expected that the proposed method would contribute to automatic modeling of various objects.

Study on Vibrated Cutting Blade with Hinge Mechanism (힌지구조 진동절단장치에 관한 연구)

  • Kang, Dong-Bae;Ahn, Joong-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.443-448
    • /
    • 2010
  • Rapid advance in information technology requires high performance devices with compact size. Integrated multi-layer electronic element with different functions enables those compact devices to possess various performances and powerful capabilities. In mass production, the multi-layer electronic element is manufactured as a bulk type with a large number of parts for productivity. However, this may cause the electronic part to be damaged in the cutting process of the bulk elements to separate into each part. Therefore the cutting performance of multi-layer element bulk is playing an important role in the view of production efficiency. This study focuses on the cutting characteristics of multi-layer electronic elements. In order to increase the efficiency, the vibration cutting method was applied to the blade cutting machine. Flexure hinge structure, which is an physical amplifier of increasing displacement, was attached to the vibration cutting device for machining efficiency. The behaviors of flexure hinge were modeled with Lagrange equation and simulated with finite element method (FEM). Performance of hinge structure was verified by experimental modal analysis (EMA) for hinge structure to be tuned to the specific mode of vibrations. Cutting experiments of multi-layer elements were conducted with the proposed vibrating cutting module, and the characteristics was analyzed.

Visual Information Selection Mechanism Based on Human Visual Attention (인간의 주의시각에 기반한 시각정보 선택 방법)

  • Cheoi, Kyung-Joo;Park, Min-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.378-391
    • /
    • 2011
  • In this paper, we suggest a novel method of selecting visual information based on bottom-up visual attention of human. We propose a new model that improve accuracy of detecting attention region by using depth information in addition to low-level spatial features such as color, lightness, orientation, form and temporal feature such as motion. Motion is important cue when we derive temporal saliency. But noise obtained during the input and computation process deteriorates accuracy of temporal saliency Our system exploited the result of psychological studies in order to remove the noise from motion information. Although typical systems get problems in determining the saliency if several salient regions are partially occluded and/or have almost equal saliency, our system is able to separate the regions with high accuracy. Spatiotemporally separated prominent regions in the first stage are prioritized using depth value one by one in the second stage. Experiment result shows that our system can describe the salient regions with higher accuracy than the previous approaches do.

MTF Assessment and Image Restoration Technique for Post-Launch Calibration of DubaiSat-1 (DubaiSat-1의 발사 후 검보정을 위한 MTF 평가 및 영상복원 기법)

  • Hwang, Hyun-Deok;Park, Won-Kyu;Kwak, Sung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.573-586
    • /
    • 2011
  • The MTF(modulation transfer function) is one of parameters to evaluate the performance of imaging systems. Also, it can be used to restore information that is lost by a harsh space environment (radioactivity, extreme cold/heat condition and electromagnetic field etc.), atmospheric effects and falloff of system performance etc. This paper evaluated the MTF values of images taken by DubaiSat-1 satellite which was launched in 2009 by EIAST(Emirates Institute for Advanced Science and Technology) and Satrec Initiative. Generally, the MTF was assessed using various methods such as a point source method and a knife-edge method. This paper used the slanted-edge method. The slantededge method is the ISO 12233 standard for the MTF measurement of electronic still-picture cameras. The method is adapted to estimate the MTF values of line-scanning telescopes. After assessing the MTF, we performed the MTF compensation by generating a MTF convolution kernel based on the PSF(point spread function) with image denoising to enhance the image quality.

Real-time Hand Pose Recognition Using HLF (HLF(Haar-like Feature)를 이용한 실시간 손 포즈 인식)

  • Kim, Jang-Woon;Kim, Song-Gook;Hong, Seok-Ju;Jang, Han-Byul;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.897-902
    • /
    • 2007
  • 인간과 컴퓨터간의 전통적인 인터페이스는 인간이 요구하는 다양한 인터페이스를 제공하지 못한다는 점에서 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 카메라를 통해 인간의 손 제스처를 인식하는 새로운 인터페이스를 연구하였다. 손은 자유도가 높고 3차원의 view direction에 의해 형상이 매우 심하게 변한다. 따라서 윤곽선 기반방법과 같은 2차원으로 투영된 영상에서 contour나 edge의 정보로 손 제스처를 인식하는 데는 한계가 있다. 그러나 모델기반 방법은 3차원 정보를 이용하기 때문에 손 제스처를 인식하는데 좋으나 계산량이 많아 실시간으로 처리하기가 쉽지 않다. 이러한 문제점을 해결하기 위해 손 형상에 대한 대규모 데이터베이스를 구성하고 정규화된 공간에서 Feature 간의 연관성을 파악하여 훈련 데이터 모델을 구성하여 비교함으로써 실시간으로 손 포즈를 구별할 수 있다. 이러한 통계적 학습 기반의 알고리즘은 다양한 데이터와 좋은 feature의 검출이 최적의 성능을 구현하는 것과 연관된다. 따라서 배경으로부터 노이즈를 최대한 줄이기 위해 피부의 색상 정보를 이용하여 손 후보 영역을 검출하고 검출된 후보 영역으로부터 HLF(Haar-like Feature)를 이용하여 손 영역을 검출한다. 검출된 손 영역으로부터 패턴 분류 과정을 거쳐 손 포즈를 인식 하게 된다. 패턴 분류 과정은 HLF를 이용하여 손 포즈를 인식하게 되는데 미리 학습된 각 포즈에 대한 HLF를 이용하여 손 포즈를 인식하게 된다. HLF는 Violar가 얼굴 검출에 적용한 것으로 얼굴 검출에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 HLF를 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 피부색의 색상 정보를 이용 배경과 손 영상을 최대한 분리하여 배경의 대부분이 Adaboost-Haar Classifier의 첫 번째 스테이지에서 제거되는 방법을 이용하여 그 성능을 더 향상 시켜 손 형상 인식에 적용하였다.

  • PDF

Evaluation of Y-Cap Capacitance in EMI Filter Design Using Measured S-Parameter (측정된 S-파라메터를 이용한 EMI 필터의 Y-캡 용량 산정에 대한 연구)

  • Kim, Jonghyeon;Jeon, Jiwoon;Kim, Taeho;Kim, Sungjun;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.319-332
    • /
    • 2014
  • Insertion loss is used as the character to express the efficiency of EMI filter. In this paper, we studied the better method that can measure the insertion loss of EMI filter exactly than the original method. For the achievement of this, the method measuring both common mode(CM) and differential mode(DM) insertion loss with arbitrary input/output impedance is accomplished using a 4-ports S-parameters system for consideration of unbalanced factor. Using this method, when input/output used in specific system is known, CM/DM insertion loss of EMI filter inserted in the system can be calculated. Finally, we applied 4-ports modeling method to 'X/Y capacitor part' and suggested the algorithm for selecting suitable the value of Y-capacitor using mixed mode S-parameters and mixed mode chain S-parameters.

A Study on the Intelligent 3D Foot Scanning System (인공지능형 삼차원 Foot Scanning 시스템에 관한 연구)

  • Kim, Young-Tak;Park, Ju-Won;Tack, Han-Ho;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.871-877
    • /
    • 2004
  • In this paper, for manufacturing a custom-made shoes, shape of foot acquired three-dimensional measurement device which makes shoe-last data for needing a custom-made shoes is founded on artificial intelligence technique and it shows method restoring to the original shape in optimized state. the developed system for this study is based on PC which uses existing three dimensional measurement method. And it gains shoe-last and data of foot shape going through 8 CCD(Charge Coupled Device) Which equipped top and bottom, right and left sides and 4 lasers which also equipped both sides and upper and lower sides. The acquired data are processed image processing algorithm using artificial intelligence technique. And result of data management is better quality of removing noise than other system not using artificial intelligence technique and it can simplify post-processing. So, this paper is constituted hardware and software system and it used neural network for determining threshold value, when input image on pre-processing step is being stage of image binarization and present that results.

Segmentation and 3-Dimensional Reconstruction of Liver using MeVisLab (MeVisLab을 이용한 간 영역 분할 및 3차원 재구성)

  • Shin, Min-Jun;Kim, Do-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1765-1772
    • /
    • 2012
  • Success rate of transplantation of body organs improved due to development of medical equipment and diagnostic technology. In particular, a liver transplant due to liver dysfunction has increased. With the development of image processing and analysis to obtain the volume for liver transplantation have increased the accuracy and efficiency. In this thesis, we try to reconstruct the regions of the liver within three dimensional images using the mevislab tool, which is effective in quick comparison and analysis of various algorithms, and in expedient development of prototypes. Liver is divided by applying threshold values and region growing method to the original image, and by removing noise and unnecessary entities through morphology and region filling, and setting of areas of interest. It is deemed that high temporal efficiency, and presentation of diverse range of comparison and analysis module application methods through usage of MeVisLab would make contribution towards expanding of baseline of medical image processing researches.

Multi-Modal User Distance Estimation System based on Mobile Device (모바일 디바이스 기반의 멀티 모달 사용자 거리 추정 시스템)

  • Oh, Byung-Hun;Hong, Kwang-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.65-71
    • /
    • 2014
  • This paper present the multi-modal user distance estimation system using mono camera and mono microphone basically equipped with a mobile device. In case of a distance estimation method using an image, we is estimated a distance of the user through the skin color region extraction step, a noise removal step, the face and eyes region detection step. On the other hand, in case of a distance estimation method using speech, we calculates the absolute difference between the value of the sample of speech input. The largest peak value of the calculated difference value is selected and samples before and after the peak are specified as the ROI(Region of Interest). The samples specified perform FFT(Fast Fourier Transform) and calculate the magnitude of the frequency domain. Magnitude obtained is compared with the distance model to calculate the likelihood. We is estimated user distance by adding with weights in the sorted value. The result of an experiment using the multi-modal method shows more improved measurement value than that of single modality.

A Study on the Implementation of SoC for Sensing Bio Signal (인체신호 측정을 위한 SoC 구현에 관한 연구)

  • Sun, Hye-Seung;Song, Myoung-Gyu;Lee, Jae-Heung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.109-114
    • /
    • 2010
  • In this paper, the implementation of a human signal sensing module that has capabilities to check and restore the weak signals from the human body is presented. A module presented in this paper consists of processing and sensing elements related to human pulse and body temperature and a controller implemented with SoC design method. PPG data is detected by a noise filtering process toward the amplified signal which is from the operating frequency between 0.1Hz - 10Hz. A digital temperature sensor is used to check the body temperature. A sensor outputs the corresponding value of the electric voltage according to the body temperature. Moreover, this paper discusses the implementation of an enhanced microprocessor which is synthesized with VHDL as a part of the SoC development and used to control the entire module. The SoC processor is implemented on a Xilinx Spartan 3 XC3S1000 device and has the achieved operating frequency of 10MHz. The implemented SoC processor core is successfully tested with macro memories in FPGA and the experimental results are hereby shown.