• Title/Summary/Keyword: 냉장고 소음

Search Result 71, Processing Time 0.042 seconds

냉장고의 소음진동 제어

  • 오재응
    • Journal of KSNVE
    • /
    • v.1 no.2
    • /
    • pp.95-101
    • /
    • 1991
  • 가전제품의 고부가가치를 위해서는 제품의 기본성능 충실화와 함께 소음진동 의 발생을 최대한 억제하여야 한다. 소음진동의 제어는 소음진동을 일으키는 원인에 대한 특성을 파악하고 최적의 소음진동방지 대책을 제시함으로서 효과를 얻을 수 있다. 국내의 가전 3사와 학계는 산학협동연구를 통한 제품의 고부가가치화를 위한 소음진동 제어 연구 활동이 활발히 진행되고 있으며, 본 글에서는 가전제품중 다양한 소음 특성을 갖고 있는 냉장고의 경우 진동에 의한 소음 제어 방법으로 진동 전달 특성 변경이 유효한 방법임을 제시 하고자 한다. 가전제품의 소음진동의 발생은 주로 홴등에 의한 유체유동 소음특성과 기계 구조물의 진동에 의한 소음 특성을 모두 갖는 냉장고에 대하여 알아보았다. 연구방법으로 Sound Intensity법과 가속도 측정법을 이용하여 진동의 전달 경로를 파악하고 냉장고의 압축기 진동에 의한 소음 제어의 대책을 제시하였다.

  • PDF

Objective Assessment Model for Refrigerator Noises (냉장고 소음의 객관적 평가 모델)

  • Park, Jong-Geun;Cho, Youn;Lee, Sang-Wook;Hwang, Dae-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.80-90
    • /
    • 2009
  • This paper presents objective methods which predict perceptual noise levels caused by refrigerators. Eight home refrigerators are chosen and their noises are recorded in an anechoic-chamber and a real-life apartment. In order to obtain perceptual noise levels of the refrigerators, subjective quality assessment tests were performed by 100 evaluators Then, we compute 5 sound quality metrics (SQM) which reflect psychoacoustics characteristics. Finally, objective assessment model for refrigerator noises is developed by linear combination of SQMs.

Definition and Improvement of the Sound which was generated by Bubbles at the Accumulator of the Evaporator (증발기 어큐뮤레이터에서의 버블 소음 규명 및 개선)

  • 박정희;장의영;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.148-154
    • /
    • 1996
  • 가정용 냉장고에 있어서 정음화를 위한 다각적인 노력이 냉장고의 주요 소음원이라고 할 수 있는 압축기, 냉기 순환용 팬, 압축기 냉각용 팬 및 냉매 순환용 파이프 방진구조 등의 개선을 통하여 국내외적으로 상당한 진척을 보이고 있다. 이러한 소음원들의 특징은 각각이 특정한 목적에 의하여 작동하는 하나의 구동부이거나 이러한 구동부와의 직접적인 연결에 의해 가진되는 경우로서 Airborne Noise나 Structureborne Noise를 발생시키고 있다. 본 논문에서는 이러한 압축기나 팬이 꺼진 상태에서 냉장고의 싸이클상에 열교환용 냉매가 봉입된 상태에서 압축기가 운전시 형성되었던 싸이클상의 고압 및 저압측의 압력 차이에 의하여 증발기의 Accumulator내에 형성된 Sleeve(이하, 삽입관 .PHI.1.5 Hole)에 의해서 발생되는 Bubble 소음에 대한 실험적 규명과 소음 측정을 통한 주파수 분석을 하였으며, 이러한 Bubble 소음 발생시 싸이클상의 온도 및 압력값을 측정하여 Strasberg에 의해 도출된 선형화된 식을 이용하여 Bubble 소음 발생시 주파수 분석을 통한 Bubble Size를 결정하였고, Bubble 소음 발생의 직접적인 원인으로 작용하는 Orifice를 제거하여 Bubble 소음의 개선 정도를 비교 검토하였다.

  • PDF

An experimental investigation into the mechanism of the refrigerator contraction-expansion noise (냉장고 수축팽창 소음의 발생기구에 대한 실험적 규명)

  • Lee, Yeong-Gyu;Kim, Won-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.389-396
    • /
    • 2022
  • This paper aims to identify the causes and mechanisms of contraction-expansion noise in refrigerators and proposes noise reduction methods. Contraction-expansion noise generated in refrigerators is mainly due to stick-slip phenomenon occurring on the contact surface between inner parts. Friction experiments were conducted to identify the factors causing the stick-slip phenomenon. Furthermore, the vibration level of the internal components was measured to determine the characteristics and location of the contraction-expansion noise. Based on the experimental results, experiments have been conducted to verify the noise characteristics for each factor. From this, it was confirmed that the friction experiment and the refrigerator contraction-expansion noise generation location and frequency were the same. The vibration level also increased as the vertical force was increased due to load loading. Also, it was confirmed that the contraction-expansion noise was reduced when the surface roughness was increased. Therefore, it was concluded that increasing the surface roughness of the contact surface in the same way as the results of the friction experiment was the method of reducing contraction-expansion noise.

Investigation of Mechanism of Frictional Impulse Noise in Closed Cabinet (캐비닛 구조물의 내부 마찰소음 발생 메커니즘에 관한 실험적 연구)

  • Lee, Dong Gyu;Park, Jung-Hyun;Park, Ki Hong;Ha, Byung-Kuk;Kim, Hyeong-Sik;Park, Sang Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.249-255
    • /
    • 2013
  • A large-sized refrigerator has a complicated inner structure such as a shelf and a rack for product loading. Therefore, when the refrigerator door is opened and closed, the temperature inside the refrigerator varies and vibrations occur due to the physical force applied for opening and closing the door. Owing to these factors, an abnormal sound is generated by the relative distortion between the inner structures. In this study, we aimed to clarify the mechanism that generates this abnormal noise inside the refrigerator using experimental approaches, and we also investigated ways by which to reduce this noise. Toward this end, we developed an experimental setup for measuring the noise, temperature, inner pressure, as well as amount of vibration, and we analyzed the main factors causing the noise based on the experimental results. Furthermore, we suggested a way by which to reduce the noise; this method can be applied in the design stage itself.

Reduction of contraction and expansion noise of refrigerator using thermal deformation analysis (열변형 해석을 이용한 냉장고 수축팽창 소음저감)

  • Park, Seong-Kyu;Kim, Won-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.344-351
    • /
    • 2019
  • In this work, the mechanism of contraction and expansion noise generation is investigated, and effective methods are proposed to reduce the occurrence frequency of noise during operation of the refrigerator. First, the frequency spectrum analysis was made by using the sound pressure signal measured in an anechoic chamber to investigate the characteristic of noise and the frequency of occurrence. Second, a thermal deformation analysis was conducted to predict the location of noise source. It is found from the analysis that the biggest thermal deformation occurs in the middle of the left inner case in the freezer room. Following the investigation made, a noise reduction method is proposed. The method is proposed to reduce the contraction and expansion noise by reducing the thermal deformation through increasing ABS (Acrylonitrile Butadiene Styrene) thickness in the center of refrigerator.

Numerical study on the machine room axial flow fan of a refrigerator (냉장고 기계실 축류홴 소음의 수치적 연구)

  • Jeon, Wan-Ho;Kim, Wook;Shin, Dae-Sig;Kim, Hyun-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1002-1006
    • /
    • 2006
  • The noise of a refrigerator is consisted of the various flow noises of a refrigerator fan, a compressor and a condenser fan. The demands of high flow rate, compact space and low noise are to be accommodated, especially, in the case of a premium refrigerator. In this study, flow field, noise sources and flow noise are analyzed numerically and compared to the measured data. The flow field is calculated with 3-dimensional CFD solver - SC/Tetra, and the noise source and aeroacoustic noise is analyzed with FlowNoise S/W. Low noise axial fan can be developed by controlling the dominant noise source area.

  • PDF

Estimation of Vibration Source and Sound Radiation of a Refrigerator Fan by using Measured Acceleration Signals (가속도 측정신호를 이용한 냉장고 홴의 진동원과 방사소음의 예측)

  • Jung, Byung-Kyoo;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.834-841
    • /
    • 2011
  • Obtaining the real exciting force is important for the analysis of structural vibration or sound radiation to represent the actual condition. But in most cases, it is so difficult to get the actual force signals by direct measurement using sensors due to complex geometry. This paper suggests advanced source identification method which can be applied to the prediction of radiated noise considering correlations between measured signals. This method was implemented to the identification of the fan force in the refrigerator. The analysis of structural vibration and radiated noise caused by the fan force was also performed. The comparison between predicted SPL and measured SPL of the radiated noise by the refrigerator fan showed good agreement.

Just noticeable difference of sound quality metrics for household refrigerator noise (가정용 냉장고 소음 음질요소의 최소인지한계량)

  • You, Jin;Jeong, Choong-Il;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.137-140
    • /
    • 2007
  • A prediction model for the sound quality of household refrigerator noise was proposed by investigating subjective and objective attributes of the noise [Jeon et al. (2007) Appl. Acoust.]. In the present study, the just noticeable difference (JND) of each sound quality metric - Zwicker's loudness, sharpness, roughness and fluctuation strength - which constitute the prediction model was investigated. Loudness of recorded sound samples from five refrigerators were varied according to constant intervals in sound pressure levels. Sharpness was also changed at 14-16 barks. Auditory experiments were conducted to discriminate the JNDs of loudness and sharpness by method of limit. The results indicated that JNDs of loudness and sharpness were 0.50 sone and 0.08 acum, respectively.

  • PDF