• Title/Summary/Keyword: 냉장고도어

Search Result 17, Processing Time 0.021 seconds

Structural Analysis of Built-in Side-by-Side Refrigerator with Ice Dispenser and Home Bar and Evaluation of Door Differences and Gasket Gap (얼음디스펜서와 홈바가 있는 빌트인 양문형 냉장고의 구조해석 및 도어 단차와 개스킷 간극의 평가)

  • Ryu, Si-Ung;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.465-473
    • /
    • 2018
  • A cabinet-door integrated finite element model for a built-in side-by-side refrigerator with an ice dispenser and home bar was constructed, and its deformation was analyzed by ANSYS. As loads, the food load in the shelf and baskets, and thermal load occurring during the normal operation condition were considered. From results of the analyses, the door height difference (DHD) and door flatness difference (DFD) between the two doors, and the increase in the gap of the door gasket, which affects the sealing of cool air in the cabinet, were derived. As results of an evaluation of the differences, the DHD and DFD under the assembled condition satisfied the acceptance criteria of the manufacturer. The food and thermal loads increased the DHD and DFD due to thermal deformation, and the DFD increased significantly. In addition, the increase in the gap of door gasket located between the cabinet and doors was derived from the results of displacements under the food and thermal loads. The evaluation showed that the maximum increase in gap appeared at the left edge of the freezing compartment gasket, which satisfied the acceptance criteria of the manufacturer.

Evaluation of control feel in opening and closing the doors of a virtual refrigerator in the CAVE system with an Arm-Master (CAVE 공간에서 Arm-Master를 이용한 가상냉장고 도어 개폐의 조작감 평가)

  • 박재희;이인석;김진욱;고희동
    • Science of Emotion and Sensibility
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study aims to validate the effectiveness of CAVE system with an Arm-Master in the evaluation of virtual prototypes. A virtual kitchen with a refrigerator was presented in the CAVE system. Subjects put in and pull out virtual objects by using the Arm-Master. Twelve subjects, six males and six females, participated in the six experimental conditions : three types of refrigerator door grips and two reaction forces. After each trial, subjects evaluated a door grip of the virtual refrigerator in terms of easiness of operation, similarity in force, presence etc. The results show the mean values of vortical-type door grips are greater than the horizontal pocket-type door grip. Also the subjects preferred 5N in the reaction force of the Arm-Master rather than 15 N when they open and close virtual door. Unexpectedly, female subjects significantly marked low scores in the evaluation terms compared ruth mali subjects. It explains the Arm-Master should be modified much more if it works effectively in design evaluation.

  • PDF

Development of the auto leveling mechanism for side-by-side refrigerator doors (양문형 냉장고 도어의 자동 단차 맞춤 메커니즘 개발)

  • Weng, Lei;Yun, Jae-Deuk;Jung, Yoong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3165-3174
    • /
    • 2012
  • Recently the increasingly common large refrigerator is the side by side(SBS) refrigerator whose freezing chamber and refrigerating chamber are set side by side. But one of the biggest dissatisfaction of customers about SBS refrigerator is that the two doors don't meet the same height when they are closed. It is called door height difference(DHD). The main cause of DHD is the unevenness of floor on which a refrigerator is placed or the cabinet deformation caused by long time use. When the DHD is confirmed, the customer or maintenance personnel use wrench to adjust the support screw to make the refrigerator to reach the horizontal position. But for big refrigerator, it is not only difficult for women and old people who don't have enough force to adjust it, but also inappropriate to require customers to do this job. In order to resolve this problem, this research proposes a new mechanism which can detect the DHD and adjust two doors to the same height automatically. The adjustment would be completed during opening and closing the doors, avoid needing hard operation with wrench by hand.

Interference-free French door design using four-bar linkage mechanism (4절 링크를 이용한 프렌치 도어의 간섭 방지 설계)

  • Lee, Jin-Gyu;Yun, Jae-Deuk;Jung, Yoong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2031-2037
    • /
    • 2011
  • The French doors have the advantage that they can use inner space more efficiently due to without of partition between two rooms. However, when they are used for refrigerators, the door gaskets for sealing may cause interference of themselves during opening and closing, which causes fatal effect on sealing by worn out of the gaskets as well as increases door opening force. This research proposes a new mechanism for the French doors using the parallelogram motion of 4-bar linkage mechanism, which does not make any interference between gaskets. We manufactured the French doors of proposed mechanism to verify that they do not cause any interference during opening and closing, as well as opening force is decreased. The use of our developed mechanism is not limited to refrigerators, but can be extended to other industrial products with the French doors.

Usability Evaluation of Refrigerator Doors Using a Haptic Device in Virtual Reality (가상현실에서 햅틱장치를 이용한 냉장고 프로토타입의 사용성 평가)

  • 이인석;박재희;고희동;김진욱
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.225-229
    • /
    • 2003
  • 본 연구는 가상현실에서 햅틱 장치(Haptic Device)를 이용한 제품의 사용성 평가의 타당성을 평가하기 위한 것으로, 가상환경에서 구축된 냉장고의 도어를 대상으로 12명의 피실험자가 사용성을 평가한 실험결과를 제시하고자 한다. 피실험자들은 세 가지의 다른 손잡이 유형과 두 가지의 도어의 여닫는 힘 조건에 따른 5가지의 다른 도어를 사용하고 각각에 대한 주관적인 평가를 하였다. 주관적 평가에서 피실험자들은 수직돌출형과 수직함몰형의 손잡이를 수평함몰형 보다 선호하는 것으로 나타났으며, 도어 여닫이 힘이 약한 경우를 더 선호하는 것으로 나타났다. 피실험자들은 가상환경에서의 제품의 사용이 실제 구매에 약간의 영향을 줄 것으로 평가했으나 실제 제품과의 차이가 많아 이에 대한 개선이 필요한 것으로 나타났다. 본 연구의 결과는 햅틱 장치를 이용한 가상현실이 제품설계 및 개발 과정에서 프로토타입 개발 도구로 이용될 가능성을 보인 것이라 할 수 있다.

  • PDF

Analysis of Door Height Difference and Door Flatness Difference of Built-in Side-by-Side Refrigerator Using Cabinet-Door Integrated Model (캐비닛-도어 통합모델을 이용한 빌트인 양문형 냉장고의 도어 상하단차와 앞뒤단차 해석)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.76-83
    • /
    • 2018
  • A cabinet-door integrated finite element model was constructed for a built-in side-by-side refrigerator with an ice dispenser, and its deformation was analyzed using the ANSYS finite element software. As loads, the food load needed to fill in the cabinet and doors and the thermal load occurring during normal operation conditions were taken into consideration. The door height difference (DHD) and door flatness difference (DFD) between the two doors of the freezing and refrigerating compartments were derived. The DHD and DFD under the assembled condition without applied loads satisfied the acceptance criteria specified by the refrigerator manufacturer. It appeared that the food load increases the DFD slightly. The thermal load tends to increase the differences because of the thermal deformation, especially the DFD, of the cabinet and doors.

Optimization of Door Hinges of a Large Refrigerator (대형 냉장고 도어 힌지의 최적 설계)

  • Youn, Seong-Jun;Noh, Yoo-Jeong;Kim, Seok-Ro;Kim, Ji-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.71-78
    • /
    • 2014
  • Door hinges of large refrigerators are required to ensure that the doors open and close smoothly in addition to supporting door weights and enduring the impact loads due to door opening and closing. However, door hinge design is difficult because of complex hinge mechanisms and sensitive structural safety. In this study, the mechanism satisfying the required spring response, space constraints, and structural strength is optimized, and the volume of the outer frame covering the hinge mechanism is minimized for reducing production costs. The entire design process is automated using the PIDO(Progress Integration and Design Optimization) technique, which achieves an efficient design process. Therefore, the frame mass is reduced to 24%, and the mechanism performance and structural stability are improved.

Structural Analysis of Cabinet in Built-in Side-by-Side Refrigerator and Evaluation of Door Height Difference and Door Flatness Difference (빌트인 양문형 냉장고의 캐비닛 구조해석 및 도어 상하단차와 앞뒤단차의 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.30-36
    • /
    • 2018
  • Since the freezer compartment and the refrigerating compartment are located side by side in a side-by-side refrigerator, the problems of the door height difference (DHD) and door flatness difference (DFD) have been constantly raised. Deformation of the cabinet of a built-in side-by-side refrigerator under food and thermal loads was analyzed by the finite element software ANSYS. The DHD and DFD, occurring due to the deformation of the cabinet, evaluated. From the results of the analysis of the cabinet, the 3D CAD software CATIA was used to geometrically translate and rotate the freezing and refrigerating compartment doors, in consideration of the displacement of the hinge fastening point. Then, the coordinates of two points on the upper corner of the doors were determined, and the DHD and DFD were obtained. It found that the thermal load, occurring under normal operation conditions, decreases the door height difference, but increases the door flatness difference. Values of the analyzed DHD and DFD appear smaller than the acceptance criteria used by the refrigerator manufacturer.

Ergonomic Evaluation of Refrigerator Design (냉장고 디자인의 인간공학적 평가)

  • 박재희;황민철;박세진;김명석
    • Archives of design research
    • /
    • v.14
    • /
    • pp.1-7
    • /
    • 1996
  • Designers often hesitate to decide the shape, size, and layout of a product. Though ergonomic principles and data are absolutely needed in this process, they don have enough guidelines to refer. For the refrigerator designers, they also are not convinced of their decision: the vertical position of the freezing and refrigerating rooms, the height of shelves, the shape of door-handle, etc. To support the refrigerator design, we applied several ergonomic methods to the evaluation of refrigerator. EMG was measured to evaluate the load of users lumbar muscle. Based upon the experimental EMG data, we developed a model to estimate the relative load corresponding to the height of refrigerator shelves. Two different layouts of a refrigerator, R/F and F/R styles, were compared with the model. A three-dimensional motion analysis method was used to evaluate the users motion of using a refrigerator. Ten door-handles with the different shapes and positions were evaluated by tracking the rotations of the users arm. Video protocol analysis was used to evaluate the user interface of a control panel in a refrigerator. Finally, we suggested several ergonomic design guidelines based on the facts found in this research and the anthropometric data of the Korean adults. The results of this study can be applied to the ergonomic design of refrigerators

  • PDF

Evaluation of Vertical Displacement of Door of Built-in Bottom-Freezer Type Refrigerator by Structural Analysis (구조해석을 통한 하부냉동실형 빌트인 냉장고 도어의 처짐량 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • In this study, we developed a finite element model for the built-in bottom-freezer type refrigerator and then used the structural analysis method to analyze and evaluate the deflection of the doors. We tested the validity of the developed analytical model by measuring the deflection of the hinge when loads were applied to the upper and lower hinges of the refrigerating compartment and compared these with the analysis results. The comparison of the vertical displacement of the measured result and the analysis result showed an error ratio of up to 12.8%, which indicates that the analytical model is consistent. Using the analytical model composed of the cabinet, hinges and doors, we performed analyses for two cases: both doors closed, and the refrigerating door open. Since the maximum vertical displacement of the refrigerating compartment door (R-door) with the food load is smaller than the gap between the lower surface of the R-door and the upper surface of the freezer compartment door (F-door), it is judged that the R-door and the F-door do not contact when the doors are opened or closed. In addition, the analysis result showed that the difference between the vertical displacement at the hinge on the opposite side and the hinge side of the R-door is favorably smaller than the management criterion of the refrigerator manufacturer.