• Title/Summary/Keyword: 냉방성능

Search Result 293, Processing Time 0.026 seconds

Construction of the Heat Pump System Using Thermal Effluents for Greenhouse Facilities in Jeju and Evaluation of Cooling Performance (제주 시설온실 냉난방을 위한 발전소 온배수 활용 열펌프 시스템 구축 및 냉방성능 평가)

  • Lee, Yeon-Gun;Heo, Jaehyeok;Lee, Dong-Won;Hyun, Myung-Taek
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.70-79
    • /
    • 2018
  • A heat pump system using the thermal effluent from the Jeju thermal power plant of KOMIPO was constructed with the capacity of 300 RT to supply cool or hot water to greenhouse facilities located 3 km from the power station. The way of transporting heat from the thermal effluent to greenhouses at a long distance was optimized, and a monitoring system to measure the water temperature and detect a leakage in a pipe conduit was also installed. This paper presents the system configuration of the constructed heat pump system for air conditioning and heating of greenhouse facilities in Jeju, and the characteristics of major components deployed in the system. The preoperational tests of the heat pump system were conducted during the summer season in 2018 for evaluation of its cooling performance. The operational stability and cooling performance of the heat pump system were confirmed by investigating the measured fluid temperature and flow rate, and COP of the heat pump in a cooling mode.

Flow Control of a Centralized Cooling Plant for Energy Saving (중앙식 냉방 플랜트의 유량제어를 통한 에너지 절감에 관한 연구)

  • Lee, Jeong Nam;Kim, Young Il;Chung, Kwang Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.48-54
    • /
    • 2015
  • In a centralized cooling plant, precise mechanical design and control strategy are required for peak and partial cooling load management. Otherwise, it will lead to low efficiency of cooling system and energy loss due to low partial load efficiency. The purpose of this paper is to enhance energy performance of the centralized cooling plant by controlling flow system in an industrial building using measured data and energy performance simulation program. The simulation results show that the proposed flow control can cut down annual electric power consumption by about 17% compared with the conventional cooling system.

Experimental study on cooling performance characteristics of hybrid refrigeration system in a heavy duty vehicle (상용차 하이브리드 냉방시스템 냉방 성능 특성 연구)

  • Lee, Ho-Seong;Jeon, Hanbyeol;Kim, Jung-Il;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.419-425
    • /
    • 2019
  • The objective of this study was to investigate the cooling performance characteristics of a hybrid refrigeration system in a heavy duty vehicle. The tested hybrid refrigeration system had additionally an electric compressor besides the present mechanical compressor for selective use according to the operating conditions. The applied electric compressor was a scroll type and with 18.0 cc displacement. In order to analyze the performance characteristics of the hybrid refrigeration system with respect to the cooling capacity and Coefficient of Performance (COP), other components, including two different types of compressors, were installed and tested under various operating conditions such as compressor speed and air flow rate of the evaporator. When the electric compressor was operated at 4,500 rev/min, the cooling capacity was about 4.0kW and COP was 3.5. When the mechanical compressor was operated, whereas the cooling capacity was higher than the electric controlled compressor, COP was lower due to the larger displacement and higher power consumption. To analyze the hybrid system operating characteristics due to reasonable cooling capacity with electric compressor operation, the mechanical compressor and electric compressor were operated by turns every 10 minutes under certain system operating conditions. Because surge pressure occurred when both compressors were switched on, the operating strategy required some time to balance the system pressure.

Experimental Study on Cooling Performance of A/C applied Fin-tube and PF Heat Exchangers (핀-관, 평행류 열교환기를 적용한 공조기의 냉방성능 실험연구)

  • Kwon, Young-Chul;Park, Yoon-Chang;Kwon, Jeong-Tae;Park, Gyung-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1789-1794
    • /
    • 2009
  • In the present study, the cooling performance characteristics on environment changes of A/C applied fin-tube and PF heat exchangers were experimentally investigated. Capacity and COP on an air velocity, an indoor/outdoor temperature and an indoor/outdoor relative humidity were obtained. Fin types of PF heat exchanger were a triangler and squarer form. The experimental data for the three kinds of heat exchangers were measured using the air-enthalpy calorimeter. Performance of PF A/C was more excellent than that of a fin-tube A/C. Also, the performance of PF-2 A/C with the squarer fin was more excellent than that of PF-1 A/C with the triangler fin. As the air velocity, the indoor temperature and the indoor relative humidity increase, capacity and COP increase. And as outdoor temperature increases, capacity and COP decrease. But, the performance change on the outdoor relative humidity was insignificant.

Characteristic Analysis of Hybrid Desiccant Cooling System for District Heating in Residential Environment (지역난방에 연계된 하이브리드 제습냉방시스템의 주거환경에서의 성능 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.571-579
    • /
    • 2014
  • A series of field tests on hybrid desiccant cooling systems were conducted in July-August, 2013. The temperature and humidity of the supply and return air, power, and heat consumption were monitored and transferred in real time through the Internet. The performance parameters of the cooling system, namely, cooling capacity and COP (coefficient of performance), were evaluated from the measured data and their variations under outdoor conditions was analyzed. It was found that with increase in the outdoor temperature, the total energy decreases and cooling capacity increases whereas the latter decreases with increase in the outdoor humidity. The COP was also found to increase with the increase in outdoor temperature.

Study on Improvement of Air Conditioning Units for Anti Aircraft Gun Wheeled Vehicle (차륜형 대공포 냉방장치 성능개선 연구)

  • Jeon, Ki-Hyun;Lee, Dong-Hui;Lee, Boo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1099-1103
    • /
    • 2013
  • A combat vehicle needs to have an air-conditioning unit. Accordingly, new combat systems have tended to apply an integrated heating, cooling, and ventilating system. The air conditioning unit used depends on the combat vehicle's purpose of use. In this study, we studied an air-conditioning unit for an armored combat vehicle as a special use and military specification and tried to improve the air-conditioning unit's performance.

Cooling Performance of Geothermal Heat Pump using Alluvium Aquifer (충적대수층을 이용한 지열히트펌프시스템의 냉방성능)

  • Kang, Byung-Chan;Park, Jun-Un;Lee, Chol-Woo;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.561-566
    • /
    • 2009
  • Alluvium is sedimentary stratum and composed of gravel, sand, silt, clay. Permeability of alluvium is the higher. If alluvium have lots of aquifer, will be of great use heat source and heat sink of heat pump. Alluvium aquifer contain the thermal energy of surrounding ground. Also geothermal heat pump using alluvium aquifer reduce expenses than general geothermal heat pump, because geothermal heat pump using alluvium aquifer make use of single well. In this study geothermal heat pump using alluvium aquifer was installed and tested for a building. The heat pump capacity is 30USRT. Temperature of ground water is in $12{\sim}17^{\circ}C$ annually and the quality of the water is as good as living water. The heat pump cooling COP is 4.4 ~ 4.7. The system cooling COP is 3.25 ~ 3.6. This performance is as good as BHE type ground source heat pump.

  • PDF

Investigation on the Performance of Special Purpose Automotive Air-Conditioning System Using Dual Refrigeration Cycle (듀얼 냉동사이클을 이용하는 특수목적 자동차용 에어컨 시스템의 냉방성능에 관한 연구)

  • Seo, Jae-Hyeong;Bang, You-Ma;Lee, Moo-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.213-220
    • /
    • 2016
  • The objective of this study is to investigate the cooling performance of an air-conditioning system for a special purpose vehicle under tropical and severe weather conditions. In order to evaluate and compare the cooling performances, the dual refrigeration cycle using R-134a was tested on a special purpose vehicle with various refrigerant charge amounts and indoor temperatures. The cycle was tested considering indoor cooling speed and compression ratio (discharge pressure), and was optimized at the refrigerant charge amount of 1.5 kg and outdoor temperature of $40.0^{\circ}C$. The time to reach indoor temperature of $15.0^{\circ}C$ increased by 86.5% and 38.1%, at the indoor temperatures from $25.0^{\circ}C$ to $32.5^{\circ}C$ and from $32.5^{\circ}C$ to $40.0^{\circ}C$, respectively. In addition, with the increase in indoor temperature from $25.0^{\circ}C$ to $40.0^{\circ}C$, the cooling capacity increased by 7.3%, from 19.1 kW to 20.5 kW, but decreased by 7.0% from 4.67 to 5.1.

Experimental Study on Cooling Performance of Multi-Heat Pump by Indoor-Unit Combination (실내기 조합에 따른 3실형 열펌프의 냉방성능 실험연구)

  • Kwon, Young-Chul;Chun, Chong-Keun;Park, Youn-Chang;Ko, Kok-Won;Seo, Dong-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1487-1493
    • /
    • 2008
  • In order to investigate the cooling capacity of multi-heat pump applying an inverter compressor, the experiment on the cooling performance characteristics of heat pump with 3 indoor units was performed under the cooling standard and cooling low-temperature conditions. The system data were measured by the psychrometric calorimeter. The operation characteristics and the behavior of the cooling cycle of the heat pump with 3 indoor units were understood from the cooling capacity, COP, and P-h diagram by indoor-unit combination. The operating load and performance of the multi-heat pump depends on the indoor-unit combination. The cooling capacity and COP of the low temperature condition were larger than those of the standard one. Also the cycle was analyzed by using P-h diagram.

Study on Cooling Performance Characteristics of Air Conditioning System Using R744 for a Passenger Vehicle (이산화탄소를 적용한 승용자동차 냉방시스템의 성능특성에 관한 연구)

  • Lee, Ho-Seong;Cho, Chung-Won;Won, Jong-Phil;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5457-5463
    • /
    • 2011
  • The objective of this study is to investigate cooling performance characteristics of mobile air conditioning system using R744 as an alternative of R-134a. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a passenger vehicle, the developed air conditioning system using R744 was applied in a real passenger vehicle and tested under various operating conditions with the variation of gas-cooler inlet air conditions, evaporator inlet air temperatures and compressor speeds. As a result, cooling capacity and coefficient of performance (COP) of the tested air conditioning system decreased with the rise of the inlet air temperature of the gas cooler but increased with the rise of the inlet air temperature of the evaporator. In addition, cooling capacity and coefficient of performance (COP) increased by 42.2 % with the rise of the compressor speed from 900 rev/min to 1800 rev/min, but it decreased by 55.4%.