• Title/Summary/Keyword: 냉매 407C

Search Result 51, Processing Time 0.022 seconds

일본의 $CO_2$ 냉매를 이용한 열펌프급탕기 개발 동향

  • 김만회
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.7
    • /
    • pp.65-70
    • /
    • 2002
  • 지구의 오존층을 보호하기 위한 몬트리올 의정서가 1987년 채택된 이후 오존층 파괴물질의 사용이 점차 감소되고 있다. 선진국의 경우 1995년 말부터 CFC냉매의 생산을 전폐하였고, HCFC냉매의 경우는 2020년 전폐를 목표로 대체냉매를 이용한 응용 기술개발 및 제품 생산이 진행되고 있다. 가정용 냉장고 및 차량용 에어컨에는 R-12의 대체냉매로 R-134a가 도입되었으며, 유럽을 중심으로 냉장고에는 HC계 냉매인 R-600a도 대체냉매로 사용되고 있다. 가정용 에어컨에는 혼합냉매인 R-407c 와 R-410a가 R-22 냉매를 대체하여 적용되고 있다. 그러나 현재, CFC및 HCFC 대체 냉매로 많이 사용되고 있는 HFC계 냉매도 지구 온난화 지수가 대단히 큰 문제를 가지고 있다. 1997년 채택된 교토의 정서에는 HFC계 냉매가 온실효과가 가스 배출규제물질에 포함되어 있다. 이에 따라서 오존층의 파괴지수가 영이고 지구온난화지수도 거의 없는 자연냉매가 주목을 받게 되었으며, 자연 냉매의 하나인 이산화탄소 ($CO_2$R744) 냉매의 응용기술 및 제품개발 연구가 선진국을 중심으로 폭넓게 진행되고 잇다. 본고에서는 $CO_2$냉매의 일반적인 특성을 간단히 소개하고 일본에서 진행되고 있는 $CO_2$냉매를 적용한 급탕시스템의 제품개발 및 시장현황에 대해서 기술하기로 한다.

  • PDF

Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-22 and R-407C in a Diameter of 4.3 mm (4.3 mm 세관내 R-22와 R-407C의 증발 열전달과 압력강하)

  • Roh, G.S.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.26-31
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a small diameter copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow mete, a condense and a double pipe type evaporate (test section). The test section consists of a smooth copper tube of 4.3 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300[kg/m^{2}s]$ and the saturation temperature of evaporator were $5[^{\circ}C]$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the Increase in mass flux and vapor quality. The evaporation heat transfer coefficient of R-22 is about $7.3\sim47.1%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is about $8\sim20%$ higher than that of R-407C.

  • PDF

Drop-In Evaluation of Thermodynamic Performance of R-22 Alternative Refrigerant Mixtures (R-22 대체용 혼합냉매의 Drop-In 열역학적 성능 계산)

  • Ju, J.M.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.423-436
    • /
    • 1996
  • Thermodynamic performance of eight zeotropic R-22 alternative refrigerant mixtures selected by AREP(R-22 Alternative Refrigerants Evaluation Program) and R-32/R-125/R-134a(23%/25%/52%), namely R-407C were evaluated by the "drop-in" simulation method. An existing air conditioner was selected and its design data were used for the simulation. "ARI Test A" air conditions were applied. The degree of vapor superheat at the compressor inlet fixed at $5^{\circ}C$ for all the mixtures. The results of the simulation were compared with those of R-22. COPs of all mixtures except for R-32/R-227ea(35%/65%) and R-32/R-125/R-134a(10%/70%/20%), were higher than that of R-22 by 2%~8%, while the capacities were all lower than that of R-22 by 13%~27%. COP of R-32/R-134a(40%/60%) was 2.4% higher but the capacity was 15% lower than those of R-22. In the case of R-32/R-134a(30%/70%), COP and capacity were 5.5% higher and 15% lower than those of R-22, respectively. Among the ternary mixtures, R-407C and R-32/R-125/R-134a(30%/10%/60%) showed the best performance. COP of R-407C was 2.4% higher than those of R-22 but the capacity was 15% lower.

  • PDF

An experimental study on the performance of a window system air-conditioner using R407C and R410B (R407C 및 R410B 적용 창문형 에어컨의 성능에 관한 실험적 연구)

  • Kim, M.H.;Shin, J.S.;Kim, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-544
    • /
    • 1997
  • This study presents test results of a residential window system air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests was performed for the basic and liquid-suction heat exchange cycle in a psychrometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-line suction-line heat exchange cycle was also considered to improve the performance of the system. Test results were compared to those for the basic R22 system.

  • PDF

Alternative Refrigerant and Oil for Hermetic Refrigerant Compressors (냉동공조용 밀폐형 압축기의 대체냉매와 냉동기유)

  • 강태욱
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.2
    • /
    • pp.23-27
    • /
    • 2001
  • Until 1996, CFC refrigerants haven't been used because it destroyed ozone that affecting In ecosystem. And HCFC will prohibit until 2020. In Europe, they attempt to move up its fulfillment. Until now the change have completed CFC into HFC134a and is considerated HCFC into HFC410A and HFC407C. But HFC41 OA has high condenser temperature and HFC407C is non-azeotropic refrigerant mixture and gliding temperature phenomenon. New refrigerant ell POE, PVE, PAG was also developed.

  • PDF

Flow boiling heat transfer characteristics of R-407C ternary refrigerant mixtures (R-407C 냉매의 흐름비등 열전달 특성)

  • 오종택
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.28 no.5
    • /
    • pp.375-388
    • /
    • 1999
  • 1974년 6월 Rowland와 Molina가 CFCs등의 화학물질이 성층권의 오존층을 파괴시킨다는 가설의 발표는 많은 환경론자들의 관심과 함께 논쟁의 대상이 되었다. 이 가설은 1985년 10월 Farman 등의 영국 남극조사팀에 의해 남극상공의 성층권 오존이 1970년대에 비해 약 40% 정도 감소된 것이 확인되면서 지구전체의 심각한 환경문제로 대두되었다.

  • PDF

Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes (마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

Condensation heat transfer for refrigerant-oil mixtures in microfin tube condenser (마이크로핀관 응축기 내 냉매-냉동기유 혼합물의 전열 특성)

  • Cho, Keum-Man;Tae, Sang-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.90-95
    • /
    • 2000
  • Condensation heat transfer experiments for R-22 and R-407C refrigerants mixed with mineral oil and POE oil respectively were performed in straight and U-bend sections of a microfin tube. Experimental parameters were an oil concentration from 0 to 5%, a mass flux from 100 to $400 kg/m^2s$ and an inlet quality from 0.5 to 0.9. The enhancement factors for R-22 and R-407C refrigerants at the first straight section decreased continuously as the oil concentration increased. They decreased rapidly as the mass flux decreased and inlet quality increased. The heat transfer coefficients in the U-bend were the maximum at the $90^{\circ}$ position. The heat transfer coefficients at the second straight section within the dimensionless length of 48 were larger by a maximum of 33% than the average heat transfer coefficients at the first straight section.

  • PDF

Pool Boiling Heat Transfer Coefficients of New Refrigerants on Various Enhanced Tubes (열전달 촉진관에서 신냉매의 풀비등 열전달계수)

  • 박진석;김종곤;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.710-719
    • /
    • 2001
  • Pool boiling heat transfer coefficients (HTCs) of HCFC123, HFC134a, HCFC22, HFC407C, HFC410A and HFC32 wre measured on a horizontal smooth tube, 26 fpi low fin tube, Turbo-B and Thermoexcel-E enhanced tubes. AN experimental apparatus was designed such that all tubes heated by cartridge heaters could be installed at the same time to save the refrigerant. Data were taken in the pool of $7^{\circ}C$ with the heat flux decreasing from 80 kW/$m^2\;to\;5kW/m^2$. Test results showed that HTCs of pure refrigerants and those of a azeotrope were greatly influenced by reduced pressure. HTCs of HFC407C were 21~25% lower than those of HCFC22 due to mass transfer resistance. For all refrigerants, enhanced tubes with sub-surface and sub-tunnels showed the largest heat transfer enhancement. Especially the largest heat enhancement was obtained for HCFC123 whose reduced pressure is the lowest among al the refrigerants tested. This indicates that either Turbo-B or Thermoexcel-E enhanced tube would be the best choice when used with a low vapor pressure refrigerant.

  • PDF