• Title/Summary/Keyword: 냉매 134a

Search Result 202, Processing Time 0.031 seconds

The Effect of R-134a and R-430a on the Performance of Refrigeration Equipment for R-134a (R-134a용 냉동장치의 성능에 미치는 R-134a와 R-430a의 영향)

  • Byun, Chul-Kju;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.21-26
    • /
    • 2014
  • The effect of refrigerant R-134a and R-430a on the performance of refrigeration equipment for R-134a is investigated. Refrigeration effect, compression work and coefficient of performance of refrigeration equpment for both R-134a and R-430a are obtained by experimentation. These performances comparison between R-134a and R-430a is made in case of the maximum load. Refrigeration effect for R-134a and that for R-430a is almost equal while compression work for R-134a is less than that for R-430a. Consequently it shows that coefficient of performance for R-134a is relatively 11% higher than that for R-430a.

  • PDF

The Condensation Pressure Drop of Alternative Refrigerants for R-22 in Small Diameter Tubes (세관내 R-22 대체냉매의 응축압력강항에 관한 연구)

  • O, Hu-Gyu;Son, Chang-Hyo;Choe, Yeong-Seok;Kim, Gi-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1245-1252
    • /
    • 2001
  • The condensation pressure drop for pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube was investigated. The test section is a counterflow heat exchanger with refrigerant flowing in the inner tube and coolant flowing in the annulus. The test section consists of 1220 [mm] length with horizontal copper tube of 3.38 [mm] outer diameter and 1.77 [mm] inner diameter. The refrigerant mass fluxes ranged from 450 to 1050 [kg/(㎡$.$s)] and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main experimental results were summarized as follows : In the case of single-phase flow, the pressure drop of R-134a is much higher than that of R-22 and R-410A for the same Reynolds number. The friction factors for small diameter tubes are higher than those predicted by Blasius equation. In the case of two-phase flow, the pressure drop increases with increasing mass flux and decreasing quality. The pressure drop of R-134a is much higher than that of R-22 and R-410A for the same mass flux. Most of correlations proposed in the large diameter tube showed enormous deviations with experimental data. However, the correlation predicted by Honda et al showed relatively good agreement with experimental data for R-134.

A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube (다채널 알루미늄 평판관내 R22와 R134a의 흐름 응축 열전달 성능 비교)

  • 서영호;박기정;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.589-598
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22 and R134a were measured on a horizontal 9 hole aluminum multi-channel tube. The main test section in the refrigerant loop was made of a flat multi-channel aluminum tube of 1.4 mm hydraulic diameter and 0.53 m length. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in the vapor qualities of 0.1∼0.9 at mass flux of 200∼400 kg/$m^2$s and heat flux of 7.3∼7.7 ㎾/$m^2$ at the saturation temperature of 4$0^{\circ}C$. All popular correlations in single-phase subcooled liquid and flow condensation originally developed for large single tubes predicted the present data of the flat tube within 20% deviation when effective heat transfer area is used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Thermal insulation for the outer tube section surrounding the test tube for the transport of heat transfer fluid is very important in fluid heat-ing or cooling type heat transfer experimental apparatus.

Performance Analysis of an Automotive Air Conditioning System Using HFC-134a as an Alternative Refrigerant (HFC-134a를 대체냉매로 사용한 자동차 냉방시스템의 성능해석)

  • Han, D.Y.;Cho, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.406-420
    • /
    • 1995
  • As concerns increase over the dangers of environmental destruction on a global scale, CFC regulations have finally been carried out and some CFC's are expected to be phased out by the end of 1995. The research for alternative refrigerants is very demanding. The major activities related to alternative refrigerants are focused on two different areas; one is the development of mixed refrigerants by using the existing refrigerants, and the other is the development of new HFC refrigerants. One of the most promising alternative refrigerant for CFC-12 is HFC-134a. HFC-134a has often been used as a replacement of CFC-12 for automotive air-conditioners. However, due to different thermodynamic properties of HFC-134a, performances of the replaced system are degraded compared with those of the CFC-12 system. Sometimes, the complete redesign of the system is required. In order to analyse and design the new system effectively, the developement of a system simulation program, in which HFC-134a can be selected as a refrigerant, is recommended. Therefore, the summary of this research is as follows : (1) The various thermodynamic properties of HFC-134a are ana lysed and programmed. (2) The model for serpentine heat exchanger is developed and programmed. (3) These subroutines are integrated to develop to develop an automotive air conditioning system simulation program which is verified by the test results. (4) The verified program is used to analyse the performance of a selected automotive air conditioning system.

  • PDF

A Study on Characteristics of HFC-l34a and OS-l2a Refrigerant in Automobile Air-Conditioning System (자동차 에어컨용 냉매인 HFC-134a와 OS-12a의 성능 특성에 관한 연구)

  • 이종인;하옥남
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.136-142
    • /
    • 2002
  • HFC-134a is currently used as the refrigerant in automobile air-conditioner, replacing the ozone depleting refrigerant CFC-12. Although HFC-l34a has no ozone depletion potential, it has a relatively high global warming potential, approximately 1300 tins that of CO$_2$ over a 100 year time horizon. Therefore, HFC- l34a does not seem to be a perfect alternative refrigerant due to high GWP. For this reason, non-azeotrope refrigerant mixture have been proposed as a long-term and drop-in alternative to HFC-l34a in the automobile air-conditioning system which has variable operating conditions with changes in RPM and pressure ratio. In this study,OS-l2a of which thermodynamic properties are similar to those of HFC-l34a is selected among the mixed refrigerant. HFC-l34a and OS-l2a are examined experimently by the performance test in the same automobile air-conditioning system.

Performance Characteristics of R134a Supercritical Heat Pump (R134a 냉매용 초임계 히트펌프의 성능 특성)

  • Choi, In-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.60-65
    • /
    • 2014
  • In this paper, cycle performance analysis for heating capacity, compression work and COP of R134a supercritical heat pump is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature in the R134a supercritical heat pump system. The main results were summarized as follows : Superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature of R134a heat pump system have an effect on the heating capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. The prediction for COP of R134a supercritical heat pump have been proposed through multiple regression analysis.

A Prediction Model for Condensation of Zeotropic Refrigerant Mixtures Inside a Horizontal Smooth Tube (수평평활관내의 비공비 혼합냉매의 응축에 대한 예측모델)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.262-270
    • /
    • 2001
  • This paper deals with a prediction method for the condensation of ternary refrigerant mixture inside a horizontal smooth tube. Based on some reliable assumptions, the governing equations for the local heat and mass transfer characteristics are derived, and the prediction for the condensation of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a, including R407C, is carried out. The local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, mass flux etc. are obtained for a constant wall temperature and a constant wall heat flux conditions, and the effects of the composition of HFC32/HFC125/HFC134a on heat transfer characteristics are examined. The prediction result is also compared with experimental data for condensation of ternary refrigerant mixtures. The predicted wall temperature distribution has a similar trend with experimental data but the predicted local heat transfer coefficients are 20-30% higher than the experimental data.

  • PDF

Computational Chemistry Study on Gas Hydrate Formation Using HFC & HCFC Refrigerants (R-134a, R-227ea, R-236fa, R-141b) (수소불화탄소 및 수소염화불화탄소 냉매(R-134a, R-227ea, R-236fa, R-141b)를 이용한 가스 하이드레이트 형성에 관한 계산화학적 해석)

  • Kim, Kyung Min;An, Hye Young;Lim, Jun-Heok;Lee, Jea-Keun;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.704-710
    • /
    • 2017
  • Although the desalination technique using gas hydrate formation is at a development stage compared to the commercially well-established reverse osmosis (RO), it still draws attention because of its simplicity and moderate operational conditions especially when using refrigerants for guest gases. In this study, DFT (density functional theory)-based molecular modeling was employed to explain the energetics of the gas hydrate formation using HFC (hydrofluorocarbon) and HCFC (hydrochlorofluorocarbon) refrigerants. For guest gases, R-134a, R-227ea, R-236fa, and R-141b were selected and three cavity structures ($5^{12}$, $5^{12}6^2$, and $5^{12}6^4$) composed of water molecules were constructed. The geometries of guest gas, cavity, and cavity encapsulating guest gas were optimized by molecular modeling respectively and their located energies were then used for the calculation of binding energy between the guest gas and cavity. Finally, the comparison of binding energies was used to propose which refrigerant is more favorable for the gas hydrate formation energetically. In conclusion, R-236fa was the best choice in terms of thermodynamic spontaneity, less toxicity, and low solubility in water.