DOI QR코드

DOI QR Code

Computational Chemistry Study on Gas Hydrate Formation Using HFC & HCFC Refrigerants (R-134a, R-227ea, R-236fa, R-141b)

수소불화탄소 및 수소염화불화탄소 냉매(R-134a, R-227ea, R-236fa, R-141b)를 이용한 가스 하이드레이트 형성에 관한 계산화학적 해석

  • Kim, Kyung Min (Department of Chemical Engineering, Pukyong National University) ;
  • An, Hye Young (Department of Chemical Engineering, Pukyong National University) ;
  • Lim, Jun-Heok (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Jea-Keun (Department of Environmental Engineering, Pukyong National University) ;
  • Won, Yong Sun (Department of Chemical Engineering, Pukyong National University)
  • 김경민 (국립부경대학교 화학공학과) ;
  • 안혜영 (국립부경대학교 화학공학과) ;
  • 임준혁 (국립부경대학교 화학공학과) ;
  • 이제근 (국립부경대학교 환경공학과) ;
  • 원용선 (국립부경대학교 화학공학과)
  • Received : 2017.05.09
  • Accepted : 2017.07.01
  • Published : 2017.10.01

Abstract

Although the desalination technique using gas hydrate formation is at a development stage compared to the commercially well-established reverse osmosis (RO), it still draws attention because of its simplicity and moderate operational conditions especially when using refrigerants for guest gases. In this study, DFT (density functional theory)-based molecular modeling was employed to explain the energetics of the gas hydrate formation using HFC (hydrofluorocarbon) and HCFC (hydrochlorofluorocarbon) refrigerants. For guest gases, R-134a, R-227ea, R-236fa, and R-141b were selected and three cavity structures ($5^{12}$, $5^{12}6^2$, and $5^{12}6^4$) composed of water molecules were constructed. The geometries of guest gas, cavity, and cavity encapsulating guest gas were optimized by molecular modeling respectively and their located energies were then used for the calculation of binding energy between the guest gas and cavity. Finally, the comparison of binding energies was used to propose which refrigerant is more favorable for the gas hydrate formation energetically. In conclusion, R-236fa was the best choice in terms of thermodynamic spontaneity, less toxicity, and low solubility in water.

가스 하이드레이트 형성원리를 이용한 해수담수화는 이미 상용화된 역삼투 방식에 비하여 아직 실증화 단계이지만 그 공정이 비교적 단순하고 특히 냉매를 객체가스로 사용할 경우 아주 낮은 공정 온도가 필요하지 않아 에너지 소비량(thermal budget)이 향상될 가능성이 있기 때문에 여전히 많은 관심을 받고 있다. 따라서 본 연구에서는 수소불화탄소(HFC, hydrofluorocarbon) 및 수소염화불화탄소(HCFC, hydrochlorofluorocarbon) 계열의 냉매들을 객체가스로 한 가스 하이드레이트 형성 거동을 에너지적인 관점에서 해석하고자 하였고 이를 위해 밀도 범함수(DFT, density functional method) 이론을 기반으로 한 분자모델링을 도입하였다. 객체가스(guest gas)로 R-134a, R-227ea, R-236fa, R-141b를 선정하였으며 계산을 위하여 물 분자로 이루어진 $5^{12}$, $5^{12}6^2$, $5^{12}6^4$의 세가지 구조의 동공들(cavities)을 구성하였다. 동공, 객체가스, 그리고 객체가스가 삽입된 동공의 구조를 분자모델링을 이용하여 각각 최적화하였고 계산된 각 구조의 에너지로부터 동공과 객체가스의 결합에너지(binding energy)를 계산하였다. 마지막으로 결합에너지를 비교함으로써 어느 냉매가 가장 유리한 조건에서 가스하이드레이트를 형성할 지를 판단하였다. 결과적으로 R-236fa가 가장 자발적(spontaneous)으로 가스 하이드레이트를 형성할 것으로 예상되었고 사람에 대한 낮은 독성과 물에 대한 작은 용해도 측면에서도 가장 적절한 선택으로 평가되었다.

Keywords

References

  1. El-Dessouky, H. T. and Ettouney, H. M., "Fundamentals of Salt Water Desalination," Elsevier(2002).
  2. Morris, R. M., "The Development of the Multi-stage Flash Distillation Process: a Designer's Point," Desalination, 93, 57-68 (1993). https://doi.org/10.1016/0011-9164(93)80096-6
  3. Ophir, A., Gendel, A. and Kronenberg, G., "The LT-MED Process for SW Cogen Plants," Desal. Water. Reuse., 4, 28-31(1994).
  4. Shaban, H. I., "Reverse Osmosis Membranes for Seawater Desalination State-of-the-art," Separ. Purif. Methods, 19, 121-131 (1990). https://doi.org/10.1080/03602549008050934
  5. Khawaji, A. D., Kutubkhanah, I. K. and Wie, J.-M., "Advances in Seawater Desalination Technologies," Desalination, 221, 47-69(2008). https://doi.org/10.1016/j.desal.2007.01.067
  6. Lee, K. P., Arnot, T. C. and Mattia, D., "A Review of Reverse Osmosis Membrane Materials for Desalination-development to Date and Future Potemtial," J. Membr. Sci., 370, 1-22(2011). https://doi.org/10.1016/j.memsci.2010.12.036
  7. 서유택, 강성필, 이재구, 이흔, "[특별기고] 가스 하이드레이트: 차세대 에너지 자원으로의 가치, 현황, 그리고 전망," NICE, 26(3), 324-344(2008).
  8. McCormack, R. A. and Andersen, R. K., "Clathrate Desalination Plant Preliminary Research Study," US Bureau of Reclamation, Technical Services Center, Water Treatment Engineering and Research Group(1995).
  9. Park, K. N., Hong, S. Y., Lee, J. W., Kang, K. C., Lee, Y. C., Ha, M. G. and Lee, J. D., "A New Apparatus for Seawater Desalination by Gas Hydrate Process and Removal Characteristics of Dissolved Minerals ($Na^+$, $Mg^{2+}$, $Ca^{2+}$, $K^+$, $B^{3+}$)," Desalination, 274(1), 91-96(2011). https://doi.org/10.1016/j.desal.2011.01.084
  10. Ryu, H., Kim, M., Lim, J.-H., Kim, J. H., Lee, J. D. and Kim, S., "Evaluation of Energy Consumption of gas Hydrate and Reverse Osmosis Hybrid System for Seawater Desalination," J. Korean Soc. Water Wastewater, 30(4), 459-469(2016). https://doi.org/10.11001/jksww.2016.30.4.459
  11. Jeffrey, G. A., "Hydrate Inclusion Compounds," J. Inclusion Phenom. Macrocyclic Chem., 1(3), 211-222(1984). https://doi.org/10.1007/BF00656757
  12. Sloan, E. D., "Clathrate Hydrates of Natural Gases," 2nd ed., Marcel Dekker(1998).
  13. Sloan, E. D., "Gas Hydrates: Review of Physical/chemical Properties," Energ. Fuel., 12(2), 191-196(1998). https://doi.org/10.1021/ef970164+
  14. Sloan, E. D., "Fundamental Principles and Applications of Natural Gas Hydrates," Nature, 426, 353-363(2003). https://doi.org/10.1038/nature02135
  15. Mao, W. L., Mao, H., Goncharov, A. F., Struzhkin, V. V., Guo, Q., Hu, J., Shu, J., Hemley, R. J., Somayazulu, M. and Zhao, Y., "Hydrogen Clusters in Clathrate Hydrate," Science, 297(5590), 2247-2249(2002). https://doi.org/10.1126/science.1075394
  16. Sloan, E. D., "Introductory Overview: Hydrate Knowledge Development," Am. Mineral., 89(8-9), 1155-1161(2004). https://doi.org/10.2138/am-2004-8-901
  17. VonStackelberg, M. and Muller, H. R., "Feste Gas Hydrate II: Struktur und Raumchemie," Z. Elektrochem., 58(1), 25-39(1954).
  18. Tillner-Roth, R. and Baehr, H. D., "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa," J. Phys. Chem. Ref. Data, 23(5), 657-729(1994). https://doi.org/10.1063/1.555958
  19. Liang, D., Wang, R., Guo, K. and Fan, S., "Prediction of Refrigerant gas Hydrates Formation Conditions," J. Therm. Sci., 10(1), 64-68(2001). https://doi.org/10.1007/s11630-001-0011-z
  20. Liang, D., Guo, K., Wang, R. and Fan, S., "Hydrate Equilibrium Data of 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-dichloro-1-fluoroethane (HCFC-141b) and 1,1-difluoroethane (HFC-152a)," Fluid Phase Equilib., 187-188, 61-70(2001). https://doi.org/10.1016/S0378-3812(01)00526-X
  21. T. Ogawaa, T., Itoa, T., Watanabea, K., Taharab, K., Hiraokab, R., Ochiaib, J., Ohmurac, R. and Morid, Y. H., "Development of a Novel Hydrate-based Refrigeration System: a Preliminary Overview," Appl. Therm. Eng., 26(17), 2157-2167(2006). https://doi.org/10.1016/j.applthermaleng.2006.04.003
  22. Wang, X., Dennis, M. and Hou, L., "Clathrate Hydrate Technology for Cold Storage in Air Conditioning Systems," Renew. Sustainable Energy Rev., 36, 34-51(2014). https://doi.org/10.1016/j.rser.2014.04.032
  23. Lim, J.-H., Lee, J. D., Park, S. S., Eom, K. H. and Won, Y. S., "Raman Spectroscopy and Molecular Modeling Study on the $CH_4$ and $SF_6$ Mixture gas Hydrate Growth Behavior," Clean Technology, 19(4), 476-480(2013). https://doi.org/10.7464/ksct.2013.19.4.476
  24. Calm, J. M., "Toxicity Data to Determine Refrigerant Concentration Limits," Air-Conditioning and Refrigeration Technology Institute, Arlington, VA(2000).
  25. Johanna, L., Kim, A. R., Jeong, G., Lee, J.-K., Lee, T. Y., Lim, J.-H. and Won, Y. S., "Salinity Effect on the Equilibria and Kinetics of the Formation of $CO_2$ and R-134a gas Hydrates in Seawater," Korean J. Mater. Res., 26(7), 382-387(2016). https://doi.org/10.3740/MRSK.2016.26.7.382
  26. Karamoddin, M. and Varaminian, F., "Water Desalination Using R141b gas Hydrate Formation," Desalin. Water Treat., 52, 2450-2456 (2013).
  27. Valtz, A., Coquelet, C., Baba-Ahmed, A. and Richon, D., "Vaporliquid Equilibrium Data for the $CO_2$ + 1,1,1,2,3,3,3,-heptafluoropropane (R227ea) System at Temperatures from 276.01 to 367.30 K and Pressures up to 7.4 MPa," Fluid Phase Equilibr., 207, 53-67 (2003). https://doi.org/10.1016/S0378-3812(02)00326-6
  28. Gaussian 09, Revision C.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. and Fox, D. J., Gaussian, Inc., Wallingford CT(2016).
  29. GaussView, Version 6, Dennington, R., Keith, T. A. and Millam, J. M., Semichem Inc., Shawnee Mission, KS(2016).
  30. Becke, A. D., "A New Mixing of Hartree-Fock and Local Density-functional Theories," J. Chem. Phys., 98, 1372-1377(1993). https://doi.org/10.1063/1.464304
  31. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. and Frisch, M. J., "Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields," J. Phys. Chem., 98, 11623-11628(1994). https://doi.org/10.1021/j100096a001