• 제목/요약/키워드: 냉매 134a

검색결과 203건 처리시간 0.027초

판각형 열교환기내의 R-134a 응축열전달 특성에 관한 실험적 연구 (Experimental Study on R-l34a Condensation Beat Transfer Characteristics in Plate and Shell Heat Exchanger)

  • 이기백;박재홍;서무교;이희웅;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.108-116
    • /
    • 2003
  • In this paper, the experimental results of condensation heat transfer were reported for the plate and shell heat exchangers(P&SHE) using R-l34a. An experimental refrigerant loop has been established to measure the condensation heat transfer coefficient of R-l34a in a vertical P&SHE. Two vertical counter flow channels were formed in the P&SHE by three plates of geometry with a corrugated trapezoid shape of a chevron angle of 45$^{\circ}$. Downflow of the condensing R-l34a in one channel releases heat to the cold up flow of water in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality of R-l34a on the measured data were explored in detail. The results indicate that at a higher vapor quality the condensation heat transfer coefficients are significantly higher. Condensation heat transfer coefficients were increased when the refrigerant mass flux was increased. A rise in the average heat flux causes an slight increase in the hr. Finally, at a higher system pressure the hr is found to be lower. Correlation is also provided for the measured heat transfer coefficients in terms of the Nusselt number.

마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구 (Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes)

  • 노건상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

공진특성을 고려한 냉동/공조용 횡자속 선형압축기의 설계 (The Design of a Linear Compressor Based on the Resonance Characteristics for the Air Conditioner)

  • 홍용주;박성제;김효봉
    • 연구논문집
    • /
    • 통권34호
    • /
    • pp.39-46
    • /
    • 2004
  • The compressors in the air conditioner have the role of the pressurization and circulation of the refrigerant. The hermetic reciprocating compressors driven by rotary motor have been used for the air conditioner. The linear compressor has very simple structure and enhancement in the efficiency in comparison to that of conventional reciprocating compressor. The linear compressors are widely used for the small cryogenic refrigerator (below 1 kW), such as the Stirling refrigerator and pulse tube refrigerator. In the cryogenic application, the pressure ratio of the linear compressor is below 1.5, but the linear compressor for the air conditioner should overcome the high pressure ratio and the large pressure difference between the each sides of the piston. The resonance characteristics of the linear compressor has the significant impacts on the power consumption. To minimize the power consumption, the linear compressor should be operated at the resonance point. In the resonance characteristics, the role of the mechanical and gas spring should be considered. In present study, the cycle of the analysis of the vapor compression refrigeration cycle with the different refrigerants (R134a, R4l0a, R600a) and the designs of the linear compressor are performed. The effects of the stiffness of the mechanical spring on the electromagnetic forces would be discussed. Finally, the results show the design specification of the linear compressor for the air conditioner.

  • PDF

마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구 (Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes)

  • 노건상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

전열촉진관군의 순수냉매 강제대류비등 (Forced Convective Boiling of Pure Refrigerants in a Bundle of Enhanced Tubes)

  • 김내현;정호종;조진표;최국광
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1831-1843
    • /
    • 2001
  • In this study, convective boiling tests were conducted for enhanced tube bundles. The surface geometry consists of pores and connecting gaps. Tubes with three different pore sizes (d$_{p}$ = 0.20, 0.23 and 0.27 mm) were tested using R-123 and R-l34a for the following range: 8 kg/m$^2$s G 26 kg/m$^2$s, 10 kW/m$^2$ q0 40 kW/m$^2$and 0.1 $\chi$ 0.9. The convective boiling heat transfer coefficients were strongly dependent on heat flux with negligible dependency on mass flux or quality. For the present enhanced geometry (pores and gaps), the convective effect was apparent. The gaps of the present tubes may have served routes for the passage of two-phase mixtures, and enhanced the boiling heat transfer. The convective effect was more pronounced at a higher saturation temperature. More bubbles will be generated at a higher saturation temperature, which will lead to enhanced convective contribution. The pore size where the maximum heat transfer coefficient was obtained was larger for R-l34a (d$_{p}$ = 0.27 mm) compared with that for R-123 (d$_{p}$ = 0.23 mm). This trend was consistent with the previous pool boiling results. For the enhanced tube bundles, the convective effect was more pronounced for R-134a than for R-123. This trend was reversed for the smooth tube bundle. Possible reasoning is provided based on the bubble behavior on the tube wall. Both the modified Chen and the asymptotic model predicted the present data reasonably well. The RMSEs were 14.3% for the modified Chen model and 12.7% for the asymptotic model.model.

열전달 촉진관에서 대체냉매의 비등열전달계수 (Pool boiling heat transfer coefficients of alternative refrigerants in enhanced tubes)

  • 이준강;고영환;정동수;송길홍;김종보
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.980-991
    • /
    • 1998
  • In this study, nucleate pool boiling heat transfer coefficients of alternative refrigerants on a plain, low fin, and two enhanced tubes were measured and compared against each other. To obtain data at conditions similar to the actual evaporator, a fluid heating method was employed instead of an electric heating method in the experiments. R123, R134a, R22 and R410a were used as working fluids and data were taken at 7 deg.C ar heat fluxes of 20 ~ 100 kW/m$\^$2/. Comparison of the plain tube data against some correlations showed that the simplest correlation of Cooper based on reduced pressure predicted the data for all fluids tested with a 10% deviation. For all refrigerants, enhanced tubes composed of subsurface and subtunnels, especially Thermoexcel-E tube, showed the highest heat transfer coefficients among the tubes tested with one exception that the low fin tube's performance was better than those of enhanced tubes for high vapor pressure fluid such as R410a at high heat flux. Finally, a low fin and enhanced tubes showed higher heat transfer enhancement for low vapor pressure of R123 than for high vapor pressure fluisd. For R123, the enhancement factors for Turbo-B and Thermoexcel-E tubes were 2.8 ~ 4.8 and 4.6 ~ 8.1 respectively.

균일하게 가열되는 수평전열관내 냉매의 유동 비등열 전달과 압력 강하 특성에 관한 연구 (A Study on Heat Transfer and Pressure Drop in Flow Boiling of Binary Mixtures in a Uniformly Heated Horizontal Tube)

  • 임태우;박종운;김준효
    • 수산해양교육연구
    • /
    • 제14권2호
    • /
    • pp.177-190
    • /
    • 2002
  • An experimental study was carried out to make clear heat transfer characteristics in flow boiling of binary mixtures of refrigerants R134a and R123 in a uniformly heated horizontal tube. Experiments were run at a pressure of 0.6 MPa both for pure fluids and mixtures in the ranges of heat flux $10{\sim}50{kW/m}^2$, vapor quality 0~100% and mass flux 150-600 $kg/m^2s$. Heat transfer coefficients of mixtures were reduced compared to the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant. Total pressure drop during two-phase flow boiling in a horizontal tube consists of the sum of two components, that is, the frictional pressure drop and pressure drop due to acceleration. The frictional pressure drop is the most difficult component to predict, and makes the most important contribution to the total pressure drop. On the other hand, the acceleration pressure drop resulting from the variation of the momentum flux caused by phase change is generally small as compared to the frictional pressure drop. There is no significant difference in measured pressure drop between mixtures and pure fluids. The correlation of Martinelli and Nelson predicted most of the present data both for pure and mixed refrigerants within 30%.

해수냉각시스템용 Aluminium Brass Tube의 R-134a 증발열전달 특성 (Evaporating heat transfer characteristics of Aluminum-brass tube for seawater cooling system using R-134a)

  • 강인호;설성훈;윤정인;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.197-201
    • /
    • 2017
  • 대부분의 어선에서는 포획된 어류를 관리하고 저장하기 위해 얼음 냉각 시스템을 사용한다. 그러나 얼음 냉각 시스템은 작동 시간의 제한뿐만 아니라 적절한 온도와 염분 농도를 유지하는 것이 어려운 단점이 있다. 본 연구의 목적은 어류 운반선의 어창에 적정한 해수온도 유지를 위한 해수 냉각 시스템용 만액식 증발 열전달 특성을 파악하는데 있다. 실험은 냉매의 해수 온도, 유량 및 포화 온도의 변화를 주며 열전달 특성을 파악하였다. 동일 열유속에서 Aluminium-Brass tube가 Copper-Nickel tube 보다 외측 열전달계수가 약 10% 큰 것으로 확인할 수 있었으며, 이를 통해 해수용 열교환기의 전열관으로 Aluminium-Brass를 적용하는 것이 열전달 측면에서 효과적일 것을 확인할 수 있었다. 만액식 단관 열전달계수와 18 kW급 만액식 해수냉각시스템의 총괄열전달계수의 비교를 통해 동일 조건에서는 25%정도 단관의 열전달계수가 큰 값을 나타내었으며, 이러한 결과는 만액식 관군 열교환기의 설계를 위한 중요한 자료가 되리라 판단된다.

평활관과 낮은 핀관에서 R245fa의 풀 비등 열전달계수 (Pool Boiling Heat Transfer Coefficient of R245fa on the Plain Tube and the Low Fin Tube)

  • 박기정;이요한;임병덕;정동수
    • 설비공학논문집
    • /
    • 제23권3호
    • /
    • pp.208-215
    • /
    • 2011
  • In this work, pool boiling heat transfer coefficients(HTCs) of R22, R123, R134a, and R245fa are measured on both horizontal plain and 26 fpi low fin tubes. The pool boiling temperature is maintained at $7^{\circ}C$ and heat flux is varied from 80 $kW/m^2$ to 10 $kW/m^2$ with an interval of 10 $kW/m^2$. Wall temperatures are measured directly by thermocouples inserted through holes of 0.5 mm diameter. Test results show that HTCs of high vapor pressure refrigerants are usually higher than those of low pressure fluids in both plain and low fin tubes. On a plain tube, HTCs of R245fa are 23.3% higher than those of R123 while on a 26 fpi low fin tube, HTCs of R245fa are 46.3% higher than those of R123. The fin effect is more prominent with low vapor pressure refrigerants than with high vapor pressure ones due to a sweeping effect.

연료전지 스택 폐열 활용 전동식 히트펌프 시스템 난방 성능 특성 연구 (Experimental study on heating performance characteristics of electric heat pump system using stack coolant in a fuel cell electric vehicle)

  • 이호성;김정일;원헌주;이무연
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.924-930
    • /
    • 2018
  • 본 연구의 목적은 수소연료전지 자동차의 난방부하 대응을 위한 스택 냉각수를 활용하여서, 전동식 히트펌프 시스템에 대한 난방성능 특성을 다양한 운전조건 변화에 대해서 고찰하는 것이다. 냉각수와 냉매(R-134a)와의 열교환을 위해서 판형열교환기를 적용하였고, 전동식 히트펌프 시스템에 적용되는 실내열교환기 입구의 공기온도와 압축기 회전수를 변화시키면서 난방 성능 특성을 분석하였다. 실내열교환기 입구 공기 온도 변화에 대해서 난방 성능은 거의 동일한 결과를 보이고 있는데, 이는 입출구 온도차와 공기 측 밀도의 변화가 균형을 이루었기 때문으로 판단된다. 반면, 히트펌프 시스템 효율(COP)의 경우, 난방 성능은 온도변화에 따라 동일하였지만, 유량 변화로 인하여서, 압축기 소모동력이 감소하였기 때문에, 실내열 교환기 입구 온도가 감소함에 따라서, 시스템 효율은 증가하는 경향을 보이고 있다. 추가적으로, EEV개도가 45%정도까지 열리는 구간에서는, 압축기 소모전력 감소하였기 때문에, 시스템 효율이 증가하였고, 그 이후에는 동일한 시스템 효율을 유지하는 것을 알 수 있었다. 압축기 회전수 변화 시에는 난방성능이 증가하면, 시스템 효율은 감소하는 경향을 보여주고 있다. 이러한 원인은 압축기 회전수 증가에 따른 유량의 증가로 판단된다. 향후, 열원으로 사용하는 냉각수에 대한 운전조건을 변화시켜가면서, 난방성능 특성을 분석하여, 전동식 히트펌프의 난방부하 대응을 위한 제어 방안을 연구하고자 한다.