• 제목/요약/키워드: 냉매 134a

검색결과 203건 처리시간 0.027초

Simulation of Refrigerator Characteristics (냉장고 특성 시뮬레이션)

  • 문춘근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.181-189
    • /
    • 1998
  • A general steady-state model for simulation on domastic refrigerator has been developed. The system model consists of various standard components such as evaporator compressor condenser capillary tube and cabinet. Cabinet is not system component but influence characteristic on domastic refrigerator. The purpose of this paper is to compare between characteristics of HFC 134a with CFC 12 in the domastic refrigerator and to predict the steady state cycle performance which is various specifications of cycle components under the continuous running conditions. As the results of simulation the coefficient of performance of both condenser and evaporator increases with increasing UA the increasing rate for condenser is greater than for evaporator.

  • PDF

A Study on the Price Evaluation Per 1 Ton of Liquefied Natural Gas According to the Refrigerants Supply Temperature in the Electric Refrigerator (전기식 냉동기에서 냉매의 공급온도에 따른 액화천연가스의 톤당 냉열 가격 산출에 대한 연구)

  • KIM, YONUNGWOO;PARK, ILSOO;CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제30권5호
    • /
    • pp.473-477
    • /
    • 2019
  • In this paper, cold heat price contained in the 1 ton/h of LNG has been evaluated using PRO/II with PROVISION release 10.2 from Aveva company when LNG is used to liquefy several refrigerants instead of using vapor recompression refrigeration cycle. Normal butane, R134a, NH3, R22, propane and propylene refrigerants were selected for the modeling of refrigeration cycle. It was concluded that LNG cold heat price was inversely proportional to the refrigerant supply temperature, even though LNG supply flow rate is not varied according to the refrigerant supply temperature.

A Study of Lorentz-Meutzner's Two Evaporator Refrigeration System Using Alternative Refrigerant Mixtures (대체혼합냉매를 사용하는 Lorentz-Meutzner의 이중 증발기 냉동 시스템의 성능에 관한 연구)

  • Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제4권2호
    • /
    • pp.123-136
    • /
    • 1992
  • A preliminary thermodynamic design model of two-evaporator refrigerator/freezer system is constructed. This system is based on Lorentz-Meutzner cycle using refrigerant mixtures. This model screens alternative refrigerant (R32, R125, R143a, R22, R134a, R152a, R124, R142b, R123) mixtures to select the best performance-giving refrigerant mixtures and its composition for the system. Also, it estimates the effects of cooling temperatures of intercoolers, evaporator's area ratio, cooling load ratio on the performance of the system. The COP of the system ranges from 1.4 to 1.6, which is superior to that of the single evaporator system charged with R12 by 13% to 29%. Among 15 mixtures, R22/R123, R143a/R123, R32/R142b, and R32/R124 (in the order of high COP) are most recommendable. For the case of R22/R123, R22 mass fraction more than 0.5(Load Ratio=1.0) or 0.7(Load Ratio=0.33) is recomended in order to replace R12 without reduction in volumetric capacity when keeping the compressor as the same one. COP has the highest value with X(R22)=0.7 and 0.8, respectively. For the case of R143a/R123, in the similar manner, mass fraction of R143a is more than 0.5 or 0.6 while best performance occurs at X(R143a)=0.8. Higher temperature intercooler is more important for the performance of the system than lower temperature intercooler. The area ratio of evaporators is roughly proportional to load ratio of the evaporators.

  • PDF

Performance Analysis of Simultaneous Heating & Cooling Water Making System(I)-Simulation (냉.온열 동시 제조시스템의 성능분석(I)-Simulation)

  • Park, Seong-Ryong;Park, Jun-Tack;An, Young-Hun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.266-271
    • /
    • 2001
  • In this study, the performance of the simultaneous heating & cooling water making system using R134a was investigated by simulation. The most important effect upon heating COP was intermediate pressure depending on input water temperature. With the input water temperature of $10^{\circ}C\;and\;20^{\circ}C$, optimum intermediate pressure were 923 and 1040kPa, respectively. At that optimum intermediate pressure, the maximum heating COP of the system operated between $0^{\circ}C$ evaporating temperature and $70^{\circ}C$ condensing temperature were 4.15 and 3.83. With installation of the subcoolers in high or low pressure section, the system COP was increased by reducing the refrigerant mass flow rate. Under the optimum pressure and $10^{\circ}C$ input water temperature, it was found that heating COP was maximized when the low-subcooler and high-subcooler capacity rate were taken by 14% and 13%, respectively.

  • PDF

Performance Comparison of Cubic Equations of State With Two Temperature Dependent Parameters (두 개의 온도 의존 매개변수가 있는 3차 상태방정식의 성능비교)

  • Kwon, Young-Wook;Park, Kyoung-Kuhn
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.205-210
    • /
    • 2001
  • Cubic equations of state with two temperature dependent parameters are suggested and optimized using ASHRAE data for methane, propane, carbon dioxide, R-32 and R-134a. Appropriate simple functional forms are assumed for the temperature dependent parameters. The equations tested are Martin, Fuller, Harmens-Knapp, Schmidt-Wenzel. Among them modified Schmidt-Wenzel equation of state appears to be the choice for calculation of saturation properties such as vapor pressures, saturated liquid volumes, and saturated vapor volumes with an average absolute deviation of about one percent over the entire region excluding; the near cirtical.

  • PDF

Study on the Mechanical Stability of Red Mud Catalysts for HFC-134a Hydrolysis Reaction (HFC-134a 가수분해를 위한 Red mud 촉매 기계적 안정성 향상에 관한 연구)

  • In-Heon Kwak;Eun-Han Lee;Sung-Chan Nam;Jung-Bae Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • 제30권2호
    • /
    • pp.134-144
    • /
    • 2024
  • In this study, the mechanical stability of red mud was improved for its commercial use as a catalyst to effectively decompose HFC-134a, one of the seven major greenhouse gases. Red mud is an industrial waste discharged from aluminum production, but it can be used for the decomposition of HFC-134a. Red mud can be manufactured into a catalyst via the crushing-preparative-compression molding-firing process, and it is possible to improve the catalyst performance and secure mechanical stability through calcination. In order to determine the optimal heat treatment conditions, pellet-shaped compressed red mud samples were calcined at 300, 600, 800 ℃ using a muffle furnace for 5 hours. The mechanical stability was confirmed by the weight loss rate before and after ultra-sonication after the catalyst was immersed in distilled water. The catalyst calcined at 800 ℃ (RM 800) was found to have the best mechanical stability as well as the most catalytic activity. The catalyst performance and durability tests that were performed for 100 hours using the RM 800 catalyst showed thatmore than 99% of 1 mol% HFC-134a was degraded at 650 ℃, and no degradation in catalytic activity was observed. XRD analysis showed tri-calcium aluminate and gehlenite crystalline phases, which enhance mechanical strength and catalytic activity due to the interaction of Ca, Si, and Al after heat treatment at 800 ℃. SEM/EDS analysis of the durability tested catalysts showed no losses in active substances or shape changes due to HFC-134a abasement. Through this research, it is expected that red mud can be commercialized as a catalyst for waste refrigerant treatment due to its high economic feasibility, high decomposition efficiency and mechanical stability.

A Study on the Application of Offset Project for GHG Emission Reduction in Refrigerant Sector - CDM, California Compliance Offset Program - (냉매부문 온실가스 감축을 위한 외부감축사업 활용에 관한 조사 연구 - CDM, 캘리포니아 상쇄제도를 중심으로 -)

  • Park, Yeon-Hwa;In, Eun-Jeong;Kim, Hong-Rok
    • Journal of Climate Change Research
    • /
    • 제7권3호
    • /
    • pp.283-288
    • /
    • 2016
  • In this study, applicability of GHG ETS Offset Program in Korea for a refrigerant sector was analyzed by reviewing foreign management policy and project status in progress related to refrigerants in the disposal stage. In order to derive the implication of the domestic Offset Program, it was looked into approved offset projects and certified offset credits current state in Korea. Offset Program has approved 22 methodologies up to the present, so it is necessary to enhance the accessibility to GHG reduction in various industrial sector including the refrigerant sector by developing appropriate methodologies. In this study firstly, it was investigated that management regulation of countries are managing the refrigerants in the disposal stage such as United States, Japan, Australia. Secondly, of CDM methodologies there were two methodologies associated with the refrigerant reduction(treatment), which were decomposition HFC-23 and destruction of HFC-134a. Also there were a non-registered methodology about destruction of HFC-134a of end of life vehicles. Lastly, in California according to Compliance Offset Program, there was Compliance Offset Protocol in ODS Projects that provided eligible conditions. Based on the review, it was examined the possible conditions for domestic offset project for refrigerant sector

Distribution of Air-Water Two-Phase Flow in a Flat Tube Heat Exchanger (알루미늄 다채널 평판관 증발기 내 냉매분배)

  • Kim Nae-Hyun;Park Tae-Gyun;Han Sung-Pil;Lee Eung-Ryul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제18권10호
    • /
    • pp.800-810
    • /
    • 2006
  • The R-134a flow distribution is experimentally studied for a heat exchanger composed of round headers and 10 flat tubes. The effects of tube protrusion depth as well as mass flux, and quality are investigated, and the results are compared with the previous air-water results. The flow at the header inlet is stratified. For the downward flow configuration, the liquid distribution improves as the protrusion depth or the mass flux increases, or the quality decreases. For the upward configuration, the liquid distribution improves as the mass flux or quality decreases. The protrusion depth has minimal effect. For the downward configuration. the effect of quality on liquid distribution is significantly affected by the flow regime at the header inlet. For the stratified inlet flow, the liquid is forced to rear part of the header as the quality decreases. However, for the annular inlet flow, the liquid was forced to the frontal part of the header as the quality decreased. For the upward flow, the effect of the mass flux or quality on liquid distribution of the stratified inlet flow is opposite to that of the annular inlet flow. The high gas velocity of the annular flow may be responsible for the trend. Generally, the liquid distribution of the stratified inlet flow is better than that of the annular inlet flow. Possible explanation is provided from the flow visualization results.

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.

Experimental Study of Vane Expander Prototype Applied to Micro Organic Rankine Cycle (초소형 유기랭킨사이클 적용 프로토 타입 베인 팽창기에 관한 실험적 연구)

  • Shin, Dong Gil;Kim, Young Min
    • Journal of Energy Engineering
    • /
    • 제23권4호
    • /
    • pp.230-235
    • /
    • 2014
  • In this study, performances of the vane expander protype for micro organic Rankine cycle with refrigerant R134a as a working fluid have been analyzed. While operating organic Rankine cycle for analysing expander efficiencies such as overall efficiencies, volumetric efficiencies and mechanical efficiencies under $110^{\circ}C$ of expander inlet temperature, the power of the expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured while varying the rotational speed of the expander. It was found that the more the expander revolution speed is high, the more the expander power, overall efficiencies and volumetric efficiencies are higher. In case of 500 rpm of rotational speed, overall efficiencies are 6~7% and in case of 1000 rpm, overall efficiencies are 11~12%. We have found that low volumetric efficiencies result in poor overall efficiencies.