• Title/Summary/Keyword: 냉각 성능

Search Result 1,031, Processing Time 0.032 seconds

기존 냉각탑의 성능개선 방안

  • 권오익
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.32 no.12
    • /
    • pp.38-45
    • /
    • 2003
  • 본 글은 공조용 냉각탑에 대한 열적성능에 국한하여 성능저하 요소를 알아보고 그 개선 방안을 제시하고자 한다.

  • PDF

Film Cooling Modeling for Combustion and Heat Transfer within a Regeneratively Cooled Rocket Combustor (막냉각 모델을 이용한 재생냉각 연소기 성능/냉각 해석)

  • Kim, Seong-Ku;Joh, Mi-Ok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.636-640
    • /
    • 2011
  • Film cooling technique has been applied to effectively reduce thermal load on liquid rocket combustion chambers by direct injection of a portion of propellant, which flows through the regeneratively cooling channels, into the chamber wall. This study developed a comprehensive model to quantitatively predict the effects of kerosene film cooling on propulsive performance and wall cooling at supercritical pressure conditions, and assessed the predictive capability against hot-firing tests of an actual combustor. The present model is expected to be utilized as a design and analysis tool to meet the conflicting requirements in terms of performance, cooling, pressure loss and weight.

  • PDF

연소실 냉각성능 개선을 위한 경사슬롯 막냉각에서의 유동 및 열전달 특성

  • 이세영;함진기;조형희
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.30-30
    • /
    • 1999
  • 추진기관의 연소실과 같이 큰 열부하를 받는 경우 막냉각은 연소실을 보호하기 위해서 사용되는 대표적인 냉각기법이다. 막냉각의 성능을 극대화하기 위해서는 냉각유체를 2차원 슬롯을 통해서 분사시키는 것이 가장 효율적이지만 여러 가지 이유 때문에 실제 적용에 있어서는 슬롯입구 부근에 작은 구멍을 만들어 이로부터 분사되는 유체를 통해서 냉각시키게 된다. 본 연구에서는 주어진 덕트에서 분사율, 분사방법, 슬롯의 형상에 따른 슬롯 출구에서의 유동장 및 온도장 측정과 함께 물질전달 방법을 이용하여 슬롯 립(slot lip) 내벽에서 자세한 국소 열/물질전달계수를 구하였다. 분사율 0.5와 1.0에 대해서 주유동과 같은 방향으로 분사시켜줄 경우와, 유동을 제한시켜 주고 이차유동의 방향을 각각 주유동과 같은 방향과 반대방향으로 분사시키는 방법에 대하여 실험하였으며, 슬롯 입구에 경사슬롯을 설치하여 냉각유체를 분사시키는 방법에 대해서 실험하였다.

  • PDF

Experimental Study on Performance Characteristics of Liquid Rocket Engine (액체로켓엔진의 성능특성 연구)

  • 장행수;이성웅;조용호;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.211-217
    • /
    • 2003
  • A liquid rocket engine(LRE) Using LO$_2$/LNG(Liquefied Natural Gas) propellants was experimentally evaluated. The purpose of this study was to investigate the performance of the LO$_2$/LNG rocket combustor that is composed of three sect ions(igniter spacer, cylinder and nozzle section), especially focused on the influence of regenerative cool ing effect in association with the phase of regenerative coolant Series of tests were conducted under the conditions of water cool ing and regenerative cool ing with LNG in the cylinder section and independent cool ing with water in the igniter spacer and nozzle sections. Parametric studies on the variation of a chamber pressure and mixture ratio were undertaken. In addition, effect of propellant(LNG) composition and its enthalpy on the performance is examined.

  • PDF

Cooling CFD Analysis of a Car Batter Pack with Circular Cells (원통형 셀을 이용한 자동차용 배터리팩 냉각해석)

  • Shin, Hyun Jang;Lee, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.693-698
    • /
    • 2017
  • The 18650 battery cell is known to be reliable and cost effective, but it has a design limitation and low electric capacity compared to pouch-type cells. Because its economy is superior, an 18650-cell-type battery pack is chosen. A reliable temperature is very important in automobile battery packs. Therefore, in this study, the temperature stability of the battery pack is predicted using CFD simulation. Following 3C discharge tests, the results for the heat generation of the battery cell are compared to the simulation results. Based on these results, a natural convection condition, forced convection condition, direct cell-cooling condition, cooling condition on the upper and lower surfaces of the battery pack, and cooling condition using air channels are all simulated. The results indicate that the efficiency and the performance of the air-channel-type cooling system is good.

Numerical Study on the Effect of Injection Nozzle Shape on the Cooling Performance in Supersonic Film Cooling (초음속 막냉각 유동에서 분사 노즐 형상이 냉각성능에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Sang-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.641-648
    • /
    • 2016
  • In this study, the effect of injection nozzle shape on the supersonic film cooling performance is analyzed using CFD. The design parameters are inside and outside angles of upper plate of nozzle and nozzle tip thickness. It is observed that the mass flow rate of film cooling decreases with increase of inside angle, while the effect of the change of mass flow rate on the film cooling effectiveness is relatively small. In addition, cooling performance is generally reduced, except ahead of the local region where shock wave interaction with film cooling occurs, in accordance with the growth of the outside angle and tip thickness. In this paper, the CFD simulation is performed using a commercial software, ANSYS Fluent V15.0, and the CFD model is validated by comparing it with the experimental data shown in preceding research.

Design and Performance Evaluation of Dimpled EGR Cooler (딤플형 EGR 냉각기의 설계 및 성능평가)

  • Seo, Young-Ho;Lee, Hyun-Min;Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2010
  • A conventional EGR cooler, which is used in an EGR system of an automobile diesel engine, has a low heat-exchange efficiency. To maximize the heat transfer between the exhaust gas and coolant, dimples are formed on the surface of heat exchange tubes. When designing the dimpled EGR cooler, the net heat transfer areas in the conventional and dimpled tube-type EGR coolers are compared. Structural integrity evaluations are also performed by combining finite element analysis with a homogenization method. Subsequently, the process of manufacturing the dimpled tube, i.e., the formation of dimples, edge bending, center v-notch bending, compression, and plasma welding, is established and carried out. Thus, the dimpled EGR cooler is developed, and its performance is verified.

Development of Numerical Framework for Design and Analysis of Liquid Rocket Thrust Chambers (액체로켓 추력실 설계 및 성능 분석을 위한 통합해석기법 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.34-37
    • /
    • 2009
  • The present study presents a numerical methodology for early conceptual trade-off study between propulsive performance, cooling efficiency, weight and size, in which combustion and cooling precesses in regeneratively cooled rocket thrust chamber are interactively simulated. To address the capabilities and reliability of the design tool, some application results are given involving contour design, performance analysis, and wall cooling prediction as well as a systematic design evaluation.

  • PDF

Development of Combustion Test Facility for Liquid Rocket Engine (액체로켓엔진 성능 및 냉각특성 연구를 위한 연소시험장치 개발)

  • Kim, Dong-Hwan;Lee, Seong-Ung;Yu, Byeong-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Combustion test facility for liquid rocket engine using kerosene and liquid oxygen has been developed for the purpose of cooling and performance study. Test engine of thrust under 1.0 KN can be evaluated, and the real combustion test ensures a good operation of the combustion test facility. Combustion test facility will be modified to supply natural gas and liquefied natural gas as fuel and to give a regenerative cooling test.

Study of Cooling Performance Enhancement on Injector Face Plate of Rocket Engine (로켓엔진 분사면의 냉각성능 향상에 관한 연구)

  • Cho Won Kook;Seol Woo Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.215-218
    • /
    • 2005
  • An optimal fuel manifold is suggested to improve the cooling performance of injector face plate. The cooling performance at the center area of the injector face plate is to be augmented while the spatial injection uniformity is maintained. The comparison of the cooling performance of 7 candidates gives the conclusion that the dividing plate from 2-3 injector row to 9-10 injector row is an optimal. The maximum face plate temperature decreases by $27\%$ while the injection uniformity is close to that of the original design. The pressure drop in the fuel manifold of the optimal design is also same as the original design.

  • PDF