• Title/Summary/Keyword: 냉각방식

Search Result 396, Processing Time 0.023 seconds

Cooling and Storage Characteristics of Milled Rice by Different Cooling Storage Methods (냉각저장방식에 따른 백미의 냉각 및 저장특성)

  • Kim Oui-Woung;Kim Hoon;Lim Tae-Gyu
    • Food Science and Preservation
    • /
    • v.11 no.4
    • /
    • pp.448-454
    • /
    • 2004
  • This study was conducted to analyze the cooling and the quality characteristics of milled rice stored in the forced air-blast type using thermo -electric semiconductor and in the still-air type chambers using refrigeration system with refrigerant(R-22). Cooling rates of milled rice in the forced air-blast type and in the still-air type chambers were $0.30\;^{\circ}C/hour$ and $0.21\;^{\circ}C/hour$, respectively. And the temperatures of cooling air and of milled rice at different positions in the forced air-blast type chamber showed severer change than those in the still-air type chamber. During storage of milled rice in the forced air-blast type and still-air type chambers for 14 weeks, there was no significant difference in the quality characteristics, such as b value and fat acidity of milled rice, and overall sensory quality of cooked rice. But the quality characteristics of milled rice stored in room temperature chamber($25^{\circ}C$) as control decreased very rapidly compare to those stored in the cooling chambers. In aspect of fat acidity of milled rice, 6 weeks was the limitation for the safe storage in room temperature.

Experimental Study on Performance Characteristics of Liquid Rocket Engine (액체로켓엔진의 성능특성 연구)

  • 장행수;이성웅;조용호;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.211-217
    • /
    • 2003
  • A liquid rocket engine(LRE) Using LO$_2$/LNG(Liquefied Natural Gas) propellants was experimentally evaluated. The purpose of this study was to investigate the performance of the LO$_2$/LNG rocket combustor that is composed of three sect ions(igniter spacer, cylinder and nozzle section), especially focused on the influence of regenerative cool ing effect in association with the phase of regenerative coolant Series of tests were conducted under the conditions of water cool ing and regenerative cool ing with LNG in the cylinder section and independent cool ing with water in the igniter spacer and nozzle sections. Parametric studies on the variation of a chamber pressure and mixture ratio were undertaken. In addition, effect of propellant(LNG) composition and its enthalpy on the performance is examined.

  • PDF

The Design and Hot-firing Tests of a regenerative-cooled Sub-scale Combustor (재생냉각 축소형 연소기의 설계 및 연소시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Lim, Byoung-Jik;Kim, Hong-Jip;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • It was carried out hot-firing test with a regenerative-cooled sub-scale combustor which was applied regenerative-cooling, film cooling and thermal barrier coating. Test results showed that cooling methods used in the combustor play an full role in the operation of the combustor under the design condition but it is occurred high frequency combustion instability due to unsteady flow of fuel by structural support ring inserted in fuel manifold. The flow pattern of fuel was improved by excluding the ring and it will be carried out additional hot-firing test to verify the combustion stability of modified combustor.

  • PDF

빙축열이용 공조시스템

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.266
    • /
    • pp.59-64
    • /
    • 1999
  • 에너지수요 구조개혁이란 관점에서 볼 때 전력부하 평준화의 한 수단으로서 빙축열이용 공조시스템의 채용과 그 신장이 현저하다. 빙축열이용 공주시스템은 다른 축열이용시스템(예를 들면 수축열)에 비하여 단위체적당의 축열량을 크게 할 수 있어 자 스페이스를 도모할 수 있다. 또 취급이 간단하여 환경에의 영향부하가 적다는 점 등 시대를 대표하는 공조시스템이라 할 수 있다. 미쓰비시전기에서는 타사에 앞서 선진적인 빙축열이용 공조시스템을 개발$\cdot$판매하고 있으며 기종 갖추기, 성능 공히 업계 톱클래스를 유지하고 있다. 채용이 넓어지고 있는 중$\cdot$소규모 빙축열이용 공조시스템은 패키지 에어컨 방식과 Chiller방식으로 대별된다. 전자는 야간전력으로 만든 얼음으로 냉매를 냉각하여 냉방능력을 높여 에너지이용효율(COP)을 올림으로써 주간전력에너지를 삭감하는 것이다. 후자는 야간전력으로 만든 얼음으로 공조용 순환수를 냉각하여 주간에 냉방으로 이용하는 것이다. 어느 방식이나 야간의 전력으로 만들어진 얼음으로 주간에 필요한 전력에너지를 충당하고 있어, 주간전력의 야간전력으로의 시프트를 달성할 수 있는 시스템이다.

  • PDF

Turbine Cooling Design for the Development of High Efficiency Cooling Turbine (고온 고효율 냉각터빈 개발을 위한 냉각 설계 기술)

  • Cho, Hyung-Hee;Kim, Kyung-Min;Park, Jun-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.675-676
    • /
    • 2011
  • To improve efficiency and allowable life of gas turbine, the proper cooling techniques are needed. It is required not only the basic research of variable cooling techniques but also analysis of real operating conditions when design the cooling system. From this analytical results, we can predict the thermal stress and allowable life. This design process is thermal design techniques that is the most foundational design techniques to improve the efficiency of gas turbine.

  • PDF

Novel control scheme for the absence of the thermoelectric(TEC) of infrared detector in an Uncooled thermal system (비냉각 열상시스템에서의 적외선 검출기의 열전소자(TEC) 부재에 대한 효율적인 제어기법)

  • Kim, Yong-Jin;Seo, Jae-Gil;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2335-2340
    • /
    • 2012
  • The detector is an uncooled detector system that functions inside the thermoelectric cooler (TEC) equipped with features instead of the cooler. The function of the thermoelectric device to control the temperature of the detector based on a function of temperature to prevent degradation of image quality to perform the role, the latest technology trend by removing the thermoelectric device size, cost a lot of effort to reduce has been studied. In this paper, It would be proposed of the actual test result using real chamber environment of for the best TECless algorithm as to minimize the degradation of image quality and obtain the low price of the uncooled detector.

Development of High Pressure Sub-scale Regeneratively Cooled Combustion Chambers (고압 축소형 재생냉각형 연소기 개발)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.8-16
    • /
    • 2009
  • The development of high-pressure sub-scale combustion chambers is described. A total of four high-pressure sub-scale combustion chambers having either a detachable structure of the mixing head and the chamber or a single welded regenerative cooling structure have been developed. The sub-scale combustion chambers have a chamber pressure of 70 bar and propellant mass flow rate of 5.1~9.1 kg/s. The propellant mass flow rate and the recess number of the injector were changed for the improvement of combustion performance and they were validated through hot firing tests. The design and manufacturing techniques of regenerative cooling channel and film cooling to be applied to the full-scale combustion chamber were adopted through the present development and verified.

Material Trends of Nozzle Extension for Liquid Rocket Engine (액체로켓엔진 노즐확장부 소재기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.139-149
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine need thermal protection against the high temperature combustion gas. The nozzle extension of a high-altitude engine also has to be compatible with high temperature environment and several kinds of cooling methods including gas film cooling, ablative cooling and radiative cooling are used. Especially for an upper-stage nozzle extension having a large expansion ratio, the weight impact on the launcher performance is crucial and it necessitated the development of light-weight refractory material. The present survey on the nozzle extension materials employed in the liquid rocket engines of USA, Russia and European Union has revealed a trend that the heavier metals like stainless steels and titanium alloys are being substituted with light weight carbon fiber or ceramic matrix composite materials.

  • PDF

Experimental Study on Kerosene Heat Transfer Characteristics Using Simulating Cooling Channels (모사 냉각채널을 이용한 케로신 열전달 특성에 대한 실험적 연구)

  • Lee, Bom;Lee, Wongoo;Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.643-646
    • /
    • 2017
  • In a liquid rocket engine using hydrocarbon fuels, cooling of the combustion chamber wall is necessary to prevent the combustion chamber wall from melting or structurally deforming due to high heat flux. Among the various methods, regenerative cooling, which uses fuel as a coolant and then injects it into the combustion process, has good performance. This study investigated the heat transfer characteristics of kerosene as a coolant by varying the copper cross-sectional area, the flow rate in the channel, and the current applied to the channel. Convective heat transfer occurred rapidly when the cross-sectional area of the copper channel was small and when the kerosene flow velocity was fast.

  • PDF

A Study on Heating Characteristics of Li-ion Battery Applicated Single-phase Immersion Cooling Technology (단상계 침지냉각 기술이 적용된 Li-ion계 배터리 발열특성에 관한 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Giseok
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.163-172
    • /
    • 2022
  • Purpose: To secure efficient thermal management technology for Li-ion batteries, the applicability of the system applied with single-phase immersion technology was checked through an experiment. Method: Using JH3 pouch cells produced by LG-Chem, Korea, A 14S2P module was manufactured and immersed in a vegetable-based cooling fluid produced by Cargill, USA, and then charged and discharged at a rate of 0.3C to 1C to check the heat distribution. Result: It was possible to manage and there was no change in the molecular structure of the immersion solution. Conclusion: It was confirmed that the immersion cooling method can be applied to the thermal management of Li-ion batteries.