• Title/Summary/Keyword: 냄새 유발물질

Search Result 34, Processing Time 0.02 seconds

Isolation and Identification of Fatty Acid and Volatile Compounds from Tuna Fish Oil with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 참치안구유로부터 지방산 및 휘발성 성분의 분리 동정)

  • Roh, Hyung-Seob;Youn, Hyun-Seok;Park, Ji-Yeon;Sin, Sang-Kyu;Lee, Min-Kyung;Back, Sung-Sin;Chun, Byung-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.105-118
    • /
    • 2006
  • Isolation and Identification of fatty acid and volatile compounds in tuna fish oil were successfully carried out using supercritical carbon dioxide. Samples of the oil were extracted in a 56 ml semi-batch stainless steel vessel under conditions which ranged from 80 to 200 bar and 40 to $60^{\circ}C$ with carbon dioxide flows from 10 ml/min. Volatiles in the oil extracted from the samples with supercritical carbon dioxide were analyzed by gas chromatography, mass detector with canister system. The extracts were contained with various fatty acids, 57.0% of unsaturated fatty acids such as docosahexaenoic acid(DHA) and eicosapentaenoic acid(EPA), and 43.0% of saturated fatty acids. The aroma compounds in the oil showed over 129 peaks, of which 100 compounds were identified. Volatile components included 2,4-hepatadienal(fishy), dimethyldisulfide (unpleasant), dimethyltrisulfide (unpleasant) and 2-nonenal(fatty). The isolation efficiency of the volatile compounds from the samples was 99.4% at $50^{\circ}C$ and 200 bar.

  • PDF

Decomposition of odor using atmospheric-pressure plasma (플라즈마를 이용한 악취물질 분해 특성)

  • Kang, Seok-Won;Lee, Jae-Sik;Lee, Kang-San;Lim, Hee-Ah;Kim, Ji-Seong;Lee, Jeong-Dae;Park, Wol-Su;Park, Young-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.708-718
    • /
    • 2020
  • Offensive odor is recognized as a social environmental problem due to its olfactory effects. Ammonia(NH3), hydrogen sulfide(H2S) and benzene(C6H6) are produced from various petrochemical plants, public sewage treatment plants, public livestock wastes, and food waste disposal facilities in large quantities. Therefore efficient decomposition of offensive odor is needed. In this study, the removal efficiency of atmospheric-pressure plasma operating at an ambient condition was investigated by evaluating the concentrations at upflow and downflow between the plasma reactor. The decomposition of offensive odor using plasma is based on the mechanism of photochemical oxidation of offensive odor using free radical and ozone(O3) generated when discharging plasma, which enables the decomposition of offensive odor at ordinary temperature and has the advantage of no secondary pollutants. As a result, all three odor substances were completely decontaminated within 1 minute as soon as discharging the plasma up to 500 W. This result confirms that high concentration odors or mixed odor materials can be reduced using atmospheric-pressure plasma.

Use of Hydrogen Peroxide with Ozone to Simultaneously Reduce MIB and Quench Ozone Residual in Existing Water Treatment Plants Sourcing Water from the Han River (한강을 원수로 하는 오존/과산화수소 고도정수처리공정에서의 MIB제거 및 잔류오존 농도에 관한 연구)

  • McAdams, Stephen R.;Koo, Bon Jin;Jang, Myung Hoon;Lee, Sung Kyoo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.704-716
    • /
    • 2012
  • This paper provides a detailed account of pilot testing conducted at South Lake Tahoe (California), the Ddukdo (Seoul) water treatment plant (WTP) and the Bokjung (Seongnam) WTP between February, 2010, and February, 2012. The objectives were first, to characterize the reactions of ozone with hydrogen peroxide (Peroxone) for Han River water following sand filtration, second to determine empirical ozone and hydrogen peroxide doses to remove a taste-and-odor surrogate 2-methylisoborneol (MIB) using an advanced oxidation process (AOP) configuration and third, to determine the optimum dosing configuration to reduce residual ozone to a safe level at the exit of the process. The testing was performed in a real-time plant environment at both low- and high seasonal water temperatures. Experimental results including ozone decomposition rates were dependent on temperature and pH, consistent with data reported by other researchers. MIB in post-sand-filtration water was spiked to 40-50 ng/L, and in all cases, it was reduced to below the specified target level (7 ng/liter) and typically non-detect (ND). It was demonstrated that Peroxone could achieve both MIB removal and low effluent ozone residual at ozone+hydrogen peroxide doses less than those for ozone alone. An empirical predictive model, suitable for use by design engineers and operating personnel and for incorporation in plant control systems was developed. Due to a significant reduction in the ozone reaction/decomposition at low winter temperatures, results demonstrate the hydrogen peroxide can be "pre-conditioned" in order to increase initial reaction rates and achieve lower ozone residuals. Results also indicate the method, location and composition of hydrogen peroxide injection is critical to successful implementation of Peroxone without using excessive chemicals or degrading performance.

Effect of Phytoncide on Porphyromonas gingivalis (P. gingivalis에 대한 피톤치드의 항균효과)

  • Kim, Sun-Q;Shin, Mi-Kyoung;Auh, Q-Schick;Lee, Jin-Yong;Hong, Jung-Pyo;Chun, Yang-Hyun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.2
    • /
    • pp.137-150
    • /
    • 2007
  • Trees emit phytoncide into atmosphere to protect them from predation. Phytoncide from different trees has its own unique fragrance that is referred to as forest bath. Phytoncide, which is essential oil of trees, has microbicidal, insecticidal, acaricidal, and deodorizing effect. The present study was performed to examine the effect of phytoncide on Porphyromonas gingivalis, which is one of the most important causative agents of periodontitis and halitosis. P. gingivalis 2561 was incubated with or without phytoncide extracted from Hinoki (Chamaecyparis obtusa Sieb. et Zucc.; Japanese cypress) and then changes were observed in its cell viability, antibiotic sensitivity, morphology, and biochemical/molecular biological pattern. The results were as follows: 1. The phytoncide appeared to have a strong antibacterial effect on P. gingivalis. MIC of phytoncide for the bacterium was determined to be 0.008%. The antibacterial effect was attributed to bactericidal activity against P. gingivalis. It almost completely suppressed the bacterial cell viability (>99.9%) at the concentration of 0.01%, which is the MBC for the bacterium. 2. The phytoncide failed to enhance the bacterial susceptibility to ampicillin, cefotaxime, penicillin, and tetracycline but did increase the susceptibility to amoxicillin. 3. Numbers of electron dense granules, ghost cell, and vesicles increased with increasing concentration of the phytoncide, 4. RT-PCR analysis revealed that expression of superoxide dismutase was increased in the bacterium incubated with the phytoncide. 5. No distinct difference in protein profile between the bacterium incubated with or without the phytoncide was observed as determined by SDS-PAGE and immunoblot. Overall results suggest that the phytoncide is a strong antibacterial agent that has a bactericidal action against P. gingivalis. The phytoncide does not seem to affect much the profile of the major outer membrane proteins but interferes with antioxidant activity of the bacterium. Along with this, yet unknown mechanism may cause changes in cell morphology and eventually cell death.