• Title/Summary/Keyword: 내화 구조성능

Search Result 296, Processing Time 0.025 seconds

Investigation on Fire Resistance of High-Performance Cement Motar with Recycled Fine Aggregate Mixed by Two-Stage Mixing Approach (2단계 배합을 사용한 순환잔골재 혼입 고성능 시멘트 모르타르의 내화성능 연구)

  • Park, Sung-Hwan;Choi, Jun-Ho;Lee, Chi Young;Koo, Min-Sung;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • This study was conducted to confirm the applicability of recycled aggregates as aggregates for structural concrete as a way to respond to the shortage of natural aggregates. The two-stage mixing approach developed by Tam et al. is known to be a method that can improve the mechanical performance of recycled aggregate concrete without the installation of new additional facilities. In this work, modified version of two stage mixing approach, which was used in our earlier work, was introduced to prepare mortar specimens with recycled fine aggregate, and the compressive strength and fire resistance were compared to mortar mixed with normal mixing approach. According to the experimental results from mortar with recycled fine aggregate, the use of two-stage mixing approach was found to be more effective than normal mixing approach for compressive strength development. In addition, the residual strengths of the mortar with two-stage mixing approach was higher than mortar made of normal mixing approach after exposure to 600 and 900 ℃. It is possible to manufacture high-performance cement composites with recycled fine aggregates through the active use of the two-stage mixing approach.

Bond Capacity of Near-Surface-Mounted FRP in Concrete Corresponding to Fire-Protection Method (콘크리트에 표면매립보강된 FRP의 내화단열방법에 따른 부착성능)

  • Lim, Jong-wook;Kim, Tae-hwan;Seo, Soo-yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.3-10
    • /
    • 2019
  • The purpose of this paper is to find the fire-protection method for keeping on the bond capacity of Near-Surface-Mounted (NSM) FRP under high temperature. Experiments have been carried out to evaluate the bond capacity of NSM FRP by using CFRP-plates and to confirm the heat transfer to the concrete block when the refractory insulation is attached to the surface of NSM FRP. Bond test of NSM FRP under room temperature was conducted to obtain the maximum bond strength. And then a heating tests were carried out with keeping the bond stress of 30% of the maximum bond strength. As a result, the bond capacity of NSM FRP was disappeared when the temperature at epoxy reached to its glass transition temperature (GTT). In order to secure the bond capacity of the NSM FRP, it is necessary to protect the front as well as side by using insulation materials.

Evaluation of Structural Stability at High Temperatures for Beams Made of High Strength Structural Steels (SM 570) by Analytical Method (해석적 방법에 의한 고강도 강재(SM 570) 적용 보부재의 고온 시 내력 평가)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.49-54
    • /
    • 2014
  • Beams play an important role to transfer an applied load on the floor into columns. However, if the beams affected by a fire the length will be changed longer or shorter and the structural stability decreased gradually and resulted in structural failure. Therefore, the fire regulation requires that structural beam has to satisfied with a constant fire resistance. The fire resistance conducted by a constant size and boundary condition in an horizontal furnace. But this is not enough to adopt a beam made of high structural steels having various lengths. In this study, in order to suggest structural behaviors of beams made of high structural steels at high temperature, mechanical properties at high temperature and heat stress analysis were used and the surface temperature, expansion, displacement and variance of maximum load according to lengths of the beam were compared with those of SM 400.

Applied Time-Temperature Curve for Safety Evaluation in the Road Tunnel by Fire (도로터널내 화재에 따른 터널구조체의 안정성 평가를 위한 시간-온도곡선의 적용)

  • Won, Jong-Pil;Choi, Min-Jung;Jang, Chang-Il;Lee, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.551-555
    • /
    • 2009
  • This study is performed to apply a standard to evaluate fire protection assessment for tunnel structures when a fire breaks out in the road tunnel. Recently, a number of road tunnels have been rapidly increased and fire risk also multiplyed according to extend tunnel length, due to natural features and environmentally-friendly road construction in Korea. But we have not yet been prescribed appropriate time-temperature curve for tunnel fire. Therefore, we presented fire design model and investigated time-temperature curve proposed by a foreign country considering traffic, a kinds of vehicles which are a basis of heat rate. At the end, Hydrocarbon modified curve applied as design fire model by using numerical analysis and presented design fire model and examined the effects of tunnel structures.

Experimental Study on Making Databases for Fire Resistant Steel at High Temperature (내화강재의 고온특성 데이터베이스 구축 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • Fire at building can occur enormous damages to life, properties, and environment and the risk of fire breakout is going up higher because of application of combustible materials than before. Therefore, the steel industries are trying to develop fire resistant steel in order to sustain the load bearing capacity of steel structures during fire situation. In this paper, to give the basis data-bases for evaluation of structural stability of steel structures applied fire resistant steel, FR 490, the tests of mechanical and thermal properties at high temperature were conducted and the comparisons are done with the SM 490 that has the same mechanical one.

Spalling Analysis of High-Strength Reinforced Concrete Columns under High Temperature (고온에 노출된 고강도 콘크리트 기둥의 폭렬해석)

  • Shin, Sung-Woo;Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.193-200
    • /
    • 2007
  • The spalling analysis of high strength concrete columns needs a very complex and difficult process accounting for peeling of cover concrete as well as thermal, thermo-stress and hygro-transfer phenomena. However, the study on the spalling analysis method is insufficient. The practical spalling analysis algorithm is developed in this study, which formulates a vapor pressure equation as the parameter of temperature and cover depth and uses the compatibility condition In results of the spalling analysis, as the concrete strength increases and the content of PP fiber decreases the degree of spalling increases. This shows a similar result as the previous experimental study. Therefore the developed algorithm suggested in this study is expected to be useful in predicting the spalling of high strength concrete columns.

Experiment for the Improvement of Fire Resistance Capacity of Reinforced Concrete Flexural Member Strengthened with Carbon Fiber Reinforced Polymer (CFRP로 보강된 철근콘크리트 휨부재의 내화성능 개선을 위한 실험)

  • Lim, Jong-Wook;Seo, Soo-yeon;Song, Se-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.19-27
    • /
    • 2017
  • This paper is a study to improve the fire-resistance capacity of reinforced concrete (RC) members strengthened by fiber-reinforced-polymer (FRP). The fire resistance of the RC members strengthened by FRP was evaluated through high temperature exposure test. In order to improve the fire resistance of the FRP reinforcing method, a fire-proof board was attached to the reinforced FRP surface and then the high temperature exposure test was carried out to evaluate the improvement of the fire resistance performance. It was confirmed that the resistance to high temperature of NSMR could be improved somewhat compared with that of EBR from the experiment that exposed to high temperature under the load corresponding to 40% of nominal strength. When 30 mm thick fire-resistance (FR) board is attached to the FRP surface, the surface of the reinforced FRP does not reach $65^{\circ}C$, which is the glass transition temperature (GTT) of the epoxy until the external temperature reaches $480^{\circ}C$. In particular, when a high performance fire-proof mortar was first applied prior to FR board attachment, the FRP portion did not reach the epoxy glass transition temperature until the external temperature reached $600^{\circ}C$.

Study on Work-Efficiency in feild of PFB(POSCO E&C Fire Board) for High Sterength Concrete Spalling Control (고강도 콘크리트 폭렬제어를 위한 PFB(POSCO E&C Fire Board) 공법의 현장 시공성에 관한 연구)

  • Kim, Woo-Jae;Park, Dong-Cheol;Yang, Wan-Hee;Lee, Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.961-964
    • /
    • 2008
  • There are researches in progress on ensuring the safety of the high impact concrete in case of fire which is a current rising social problem and this research institute also developed PFB technology, the explosion preventing technology. PFB technology is to apply POSCO E&C Fire Board, a fireproof board, with an adhesive agent on the construction site, and this technology passed 3-hour fireproof test and this technology was proven from a previous research that the temperature of main root is maintained under $200^{\circ}C$. Therefore, tests on basic contents was performed in this research before the actual construction, with a full scale of wooden prototype to apply PFB technology to actual construction sites and the tests were done on the workability of fireproof board, the adhesive power, the resistance against imprint of wooden nail, the heat conductivity and etc. As the results of these tests, PFB technology was proven to have an excellent workability at a construction site and to be easy for processing and also, this technology was proven to have a great resisting power against imprint of wooden nail. Therefore, this research has confirmed that PFB technology has no problem to be applied on a construction site.

  • PDF

An Experimental Study on the Fire Resistance of Composite Truss Beam (합성트러스 보의 내화성능에 관한 실험적 연구)

  • Park, Won-Sup;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.135-141
    • /
    • 2009
  • The composite truss has been widely used for tall buildings and long-span structures in North America. As compared with other similar structures, it has merits such as reduction of construction period, low span/depth ratio, low dead weight and so on. It has the most effective trait for structures with long span of 12~18m. After collapse of WTC, the fire resistance behaviors of structures have been actively conducted under various fire conditions in several country. This study showed that the surface temperature of steel member in the composit truss beam was reached to $700^{\circ}C$ under the fire condition of a short time. Under the same condition, the temperature in concrete was within $200^{\circ}C$. The composit truss beam with 20mm bracing was collapsed by rapid deflection after about 3minutes. However, the beams with 25mm, 35mm, and 45mm bracing were not collapsed, even though those were reached to deflection standard of L/20 within 15minutes.

A Study on the Fire Resisting Properties of Reinforced Concrete Structures (철근콘크리트 구조물의 내화성능에 관한 연구)

  • 김무한;송하영
    • Fire Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.3-10
    • /
    • 1988
  • Concrete is incombustible and has good fire resisting properties, i. e. when exposed to fire it continues to perform satisfactorily for a reasonable period of time. Nevertheless, with time and high temperature gradient, brought about the fire, causes cracking and spatting. Further deterioration and loss of strength are caused by gradual dehydration of concrete paste. This paper is aimed to make a proposal for the design and construction of reinforced concrete structures with more sufficent resistance to fire by the theoritical analysis, which is base4 on investigation of general damages by the fire and change of properties on concrete influenced by high temperature.

  • PDF