• Title/Summary/Keyword: 내화학성

Search Result 163, Processing Time 0.034 seconds

A Study on Chemical Resistance of Cement Mortar Blended with Thermally Activated Diatomite containing Heavy Metals form EAF Dust (EAF Dust사의 중금속을 함침한 활성 규조토가 혼합된 시멘트 모르터의 내화학성에 관한 연구)

  • 류한길;임남웅;박종옥
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.143-151
    • /
    • 1997
  • Chemical resistance of the cement mortar containing the Thermally Activated Diaomite(TAD) and H.M.(Heavy Metals) has been studied. The H.M.. extracted from EAF(Electrica1 Arc Furnace) Dust. were saturated with diatomite. The diatomite was then thermally activated at $750{\circ}C$ for 30minutes and powdeled. The powder was mixed with a portland cement on a weight basis from 0%. 2.5%. 5.0%. 10%. 20%. The optimum mixture. after those mixtures were subjected to compressive strength(7 and 28days) and leaching bchaviour of H.M.. was tested for its experiment on Wet/Dry cycles and chemical resistance(e.q. imrncrsion in 5%(Conc.) of H2S04, CaC12 and hlgSO4. It was shown that the cement, mortar containing 10% of' P.D. gave a rise to the remarkable increase in compressive strength. The compressive strength was generally decrease beyond the addition of 10% of P.D. The maximum $496kgf/cm^2$ of 28days compressive strength was acheiveti when 10% of P.D. was added to the cement mortar.

Effect of Heat Capacity of Coagulant on Morphology of PVDF-Silica Mixture Through TIPS Process for the Application of Porous Membrane (다공성 분리막으로 응용을 위한 PVDF-실리카 혼합물의 응고액 열용량 변화에 따른 모폴로지 변화)

  • Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.458-467
    • /
    • 2017
  • In this study, we prepared PVDF membranes via TIPS for water treatment applications. PVDF was used for its excellent chemical and mechanical properties. The effect of coagulation bath composition, temperature, and heat capacity on the overall membrane morphology was studied and observed using SEM. A mixture of DOP and DBP was used as the diluent, and silica was used as an additive. It was observed that as the heat capacity of the coagulation bath increased, the crystallization rate of PVDF decreased yielding larger pores. Also, as the heat capacity of the coagulation bath decreased, the crystallization rate of PVDF increased yielding smaller pores.

Engineering Properties of Sewage Polymer Concrete Culvert (폴리머 콘크리트를 적용한 하수암거의 공학적 특성)

  • Kwon, Seung Jun;Min, Byung Yoon;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2012
  • Concrete sewage culvert shows degradation with time since it is always exposed to various harmful ions, and deterioration of concrete culvert propagates to structural safety problems. After reclamation, maintenance for concrete sewage culvert is very difficult so that high durable and structural performance are essential for the sewage concrete culvert. Recently polymer concrete has been used to improve mechanical properties and durability performance. In this paper, engineering properties are evaluated for sewage culvert made with polymer concrete, and leakage and adhesive strength between joints are evaluated with small-scale models. The polymer sewage culvert shows high compressive strength over 100MPa with low water permeability and chloride penetration. Furthermore, high resistances to chemical and biological attack are evaluated. Through tests for leakage and adhesive, unification of joints is verified with evaluation of no leakage and high adhesive strength. Precast polymer sewage culvert in this paper can be actively used for severe conditions like sewage lines.

Properties of Repair Cement Mortar with C12A7-based Alumina Cement and Nitrite for Low Temperature Curing (C12A7계 알루미나시멘트 및 아질산염을 사용한 저온환경 보수시공용 시멘트 모르타르의 특성)

  • Park, Jung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.124-131
    • /
    • 2017
  • The purpose of this study is to evaluate the basic performance of cement mortar for repair using alumina cement and nitrite can be cured in low temperature environment. For this purpose, the repair mortar used in the domestic construction site was selected and the experimental evaluation was carried out by adjusting the mixing amount by substituting alumina cement and nitrite for the blending ratio. The experimental test results confirmed that alumina cement and nitrite were replaced with the repair mortar, the initial strength was improved. Also, the chemical resistance was improved, the shrinkage behavior was decreased, and the resistance to freezing and thawing was increased. As a result, applying alumina cement and nitrite at a ratio of 2:1 at 7.5%, the surface condition was maintained for 5 months or longer and it was judged to be excellent in practical use for external structures.

Research on the development of the properties of PLA composites for automotive interior parts (자동차 내장재 적용을 위한 PLA 복합재료의 물성개선에 관한 연구)

  • Jung, Jae-Won;Kim, Seong-Ho;Kim, Si-Hwan;Park, Jong-Kyoo;Lee, Woo-Il
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • Since the environmental problems and new stricter regulations are forcing the industries to introduce more ecological materials for their products, biodegradable materials have attracted increasing attention. Among these materials, Polylactic acid(PLA) is a promising candidate for its modulus, strength, chemical resistance. However, PLA could not be used for automobile industries for its low heat resistance and impact strength. In this study natural fibers were (jute fiber was) introduced as reinforcements in order to improve heat resistance and impact strength of PLA. Especially for improving the adhesion between PLA and jute, various surface treatments were tried. With each treatment, we verified that the impact strength of composite was improved. With annealing treatment, we found a remarkable increase of heat resistance of PLA composite.

A Study on Performance Evaluation of New Asphalt Surface Reinforcement Method (ASRM) for Preventive Maintenance (예방적 유지보수를 위한 아스팔트 표면강화공법의 실내 성능 평가)

  • Kim, Kyungnam;Jo, Shin Haeng;Kim, Nakseok;Lee, Doosung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.311-317
    • /
    • 2018
  • The new asphalt surface reinforcement method (ASRM) is one of the preventive maintenance methods in asphalt concrete pavements. The adhesion performance of new ASRM satisfied the standard of non-slip pavement and bridge waterproofing materials. As a results of durability tests (as wheel load, rolling bottle and UV resistance test), the new ASRM showed sufficient resistance to traffic and environmental loads. The waterproof and chemical resistance tests of new ASRM were conducted to evaluate whether the pavement could be protected from water and chemicals and the performances of new ASRM were satisfactory. Furthermore, the new ASRM demonstrated some rejuvenation effects due to its toughness increases in recycled asphalt concrete mixture by 5% compared to the conventional hot mix asphalt mixture using reclaimed asphalt pavement. In conclusion, the new ASRM was evaluated to protect the asphalt concrete pavement and increase the lifetime.

Cat-CVD법을 이용하여 다양한 제막압력 조건에서 증착된 PTFE(polytetrafluoroethylene) 박막의 소수성 평가에 관한 연구

  • Alghusun, Mohammad;Yeo, Seung-Jun;An, Jeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.281-281
    • /
    • 2012
  • 연꽃잎 효과(Lotus effect)라 불리는 자가 세정 효과(self cleaning effect)는 연꽃이 항상 깨끗한 상태를 유지하는 것이 관찰되면서 꾸준히 관심에 대상이 되어 왔었다. 자가 세정 효과는 접촉각 $150^{\circ}$ 이상의 초소수성 표면에서 구현이 가능하며 이런 표면을 일상생활부터 산업분야까지 응용하고자 하는 많은 노력들이 있었다. 물질의 친수성 또는 소수성은 표면의 거칠기(roughness)와 표면에너지(surface energy)의 두 가지 특성에 의해 결정된다. 하지만 낮은 표면에너지 물질을 사용해도 접촉각 $150^{\circ}$ 이상의 초소수성 표면을 얻긴 힘들며, 표면의 거칠기를 증가시켜야 한다. PTFE (polytetrafluoroethylene)는 낮은 표면에너지를 가진 소수성 물질로 bulk일 경우 접촉각이 약 $108^{\circ}$이지만 거친 표면을 가진 박막으로 만들 경우 접촉각이 $150^{\circ}$ 이상의 값을 가지는 초수수성 표면이 가능한 물질이다. 특히, 초소수성 표면 이외에 우수한 내열성 및 내화학성 특성을 가지고 있어 디스플레이 및 태양전지 등의 자가세정(self cleaning) 보호막으로써 응용이 기대되고 있다. 본 연구에서는 HFPO (hexafluoropropylene)를 원료 가스로 이용하여, Si(100)과 유리 기판위에 Cat-CVD (Catalytic Chemical Vapor Deposition)법으로 PTFE 박막을 증착하였다. 텅스텐(W)을 촉매로 사용하였으며, 촉매온도가 $850^{\circ}C$이상인 조건에서 접촉각이 $150^{\circ}$ 이상인 초소수성 PTFE 표면을 쉽게 얻을 수 있었다. 특히 본 연구에서는 제막압력을 300 mTorr에서 700 mTorr까지 변화시켜 가며 유리와 Si 기판위에 증착하였다. Cat-CVD 제막압력을 변화시켜가며 증착된 PTFE 박막의 접촉각을 측정한 결과, 제막압력이 300 mTorr일 때 glass와 Si 기판위에 증착된 PTFE박막 표면에서의 접촉각은 각각 133, $117^{\circ}$였지만, 제막압력이 400 mTorr이상일 땐 $150^{\circ}$ 이상의 높은 접촉각을 갖는 초소수성 표면을 얻을 수 있었다.

  • PDF

Study of Thermally Induced Phase Separation of Polyvinylidene Fluoride-Silica Mixture for the Preparation of Porous Polymeric Membrane (다공성 분리막 제조를 위한 폴리플루오르화비닐리덴-실리카 혼합물의 열유도상분리 연구)

  • Kim, Se Jong;Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.189-198
    • /
    • 2017
  • In this study, we used thermally induced phase separation (TIPS) to produce water treatment membrane and poly(vinylidene fluoride) (PVDF), silica with excellent mechanical properties and chemical resistance to evaluate characterization of the membrane. The diluents used for the characterization were dioctyl phthalate (DOP) and dibutyl phthalate (DBP). We observed the crystallization temperature, cloud point and SEM images to see the manufacture conditions according to the ratio of PVDF and silica. The crystallization temperature and cloud point increased with the contents of silica. Through the phase diagram drawn from these results, the conditions for the preparation of the membrane confirmed.

High Efficiency Hybrid Ion Exchange Chemical Filter for Removal of Acidic Harmful Gases (산성유해가스 제거를 위한 고효율 음이온교환 복합 폼 화학필터의 제조)

  • Jung, Youn Seo;Kim, In Sik;Hyeon, Seung Mi;Hwang, Taek Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.539-546
    • /
    • 2017
  • In this study, an outstanding anion exchange chemical filter was prepared for acidic gas removal. Commercial anion exchange resin was attached to polyurethane (PU) foam by using different types of pressure sensitive adhesive (PSA). The water and chemical resistance and also adhesive elongation were investigated. Also, the behavior of HCl and HF adsorption was evaluated as functions of the initial concentration and flow rate. ATE-701, AT-4000C and HCA-1000 showed 900, 1,500% and 2,400% of the elongation, respectively. It was confirmed that the desorption ratio of HCA-1000 was less than 6% and had excellent durability in water and chemical resistance tests. The adsorption occurred faster as the concentration and flow rate of HCl and HF increased. But 100% adsorption equilibrium occurred after 110 minutes, regardless of the concentration and flow rate. In addition, SEM morphology showed that the adhesive was uniformly dispersed, while the porous structure of the ion exchange resin was maintained, and the chemical filter exhibited excellent durability for the adsorption/desorption process.

Experimental Study on Evaluation of Bond Strength after Ozone Treatment and Ozone Resistance of Concrete Metal Spray Coating for Advanced Water Treatment (고도정수처리용 콘크리트 금속용사 피막의 내오존성 및 오존처리 후 부착강도 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Jang, Hyun-O;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.68-75
    • /
    • 2018
  • The introduction of advanced water treatment facilities has increased as the conventional purification method cannot remove the substance clearly. However, the internal waterproofing and Anticorrosion materials of the advanced water treatment facility using ozone deteriorate due to the oxidation power of ozone and affects the concrete, which causes a decrease in durability. This study is to evaluate the ozone resistance according to the type of spray metal and the surface treatment method of the coating, and the bond strength after ozone treatment in order to develope a finishing method to prevent deterioration of concrete structure of water treatment facility using metal spraying method as a way to construct metal panel with excellent ozone resistance and chemical resistance by an easier way than the previous. The Experimental results show that spray metal Ti has superior ozone resistance even after spraying. It is considered to be the most suitable method for ozone resistance and bond performance by finishing using Teflon sealing as surface treatment method.