• 제목/요약/키워드: 내피 세포

Search Result 504, Processing Time 0.127 seconds

Development of Biocompatible Vascular Graft -Endothelialization of Small Vascular Graft- (생체적합성 인조혈관의 개발 -혈관내피화 인조혈관-)

  • 김형묵;이윤신
    • Journal of Chest Surgery
    • /
    • v.29 no.4
    • /
    • pp.373-380
    • /
    • 1996
  • Prevention of thromboembolism is the most important task in the development of bioconpatible small caliber artificial vascular graft. In normal vessels, vascular endothelial cells maintain homeosatsis by secreting numerous factors. The aim of this study is to develope a method which Improves biocompatibility of small caliver polyurethane graft using endothelial cell culture technique, and ev luate the efTectiveness of extracelluar matrix for endothelization which was produced by cultured fibroblast. Methods ; Multiporous polyurethane tube of 3 mm diameter, 0.3 mm thickness was manufactured for vascular graft. Three mongrel dogs were intubated and internal jugular veins removed. Extracelluar matrix produced by cultured flbrobast which was obtained from dog's internal jugular vein were coated to the polyurethane graft. Then, endothelial cells extracted from Jugular vein were cultured and fixed on the extracelluar matrix layer of vascular graft. Endothelial cell coated vascular grafts were implanted to the carotid arteries of experimental dogs as interposed autograft. Implanted grafts were removed after 3 and 6 weeks. As a control, PTFE graft was interposed on carotid artery. These experiments demonstrated that extracelluar matrix produced by fibroblast can afford a base for endothelial cell linings of polyurethane graft. Although thrombosis were developed on autografted en othelial cell coated graft, 33% opening was noticed, and showed less adhesion to adjacent tissue layer. These findings suggest that fiboblast produced extracelluar matrix which can be used for edothelial cell lining vascular graft, and by improving the cultured endothelial cell function, there will be a new modality for reducing thrombosis on small vascular graft.

  • PDF

Flow Cytometric Analysis of Endothelial Cell Viability in Arterial Allograft (동종동맥판 혈관내피세포의 생육성 평가에 관한 연구)

  • 임창영;홍은경
    • Journal of Chest Surgery
    • /
    • v.30 no.6
    • /
    • pp.553-558
    • /
    • 1997
  • Arterial allografts have known advantages over prosthetic vascular conduit for treatment of heart valvular disease, congenital heart disease and aortic disease. Cell viability may play a role in determining the longterm outcome of allografts. Endothelial cell is one important part in determining the allograft viability. To evaluate the viability of endothelial cells using current allograft preservation technique, porcine heart valve leaflets and arterial wall were subjected to collagenase digestion. Single endothelial cell suspension was labeled with GSA-PITC(Griffonia simplicifolia agglutininfluorescein isothiocyan te), a vascular, endothelial cell specific marker. The cell suspension was washed and incubated with Pl(Propidium iodide), which does not bind with viable cells, Endothelial cell viability was evaluated by calculating the percentage of GSA-FITC(+) and Pl(-) group using flowcytometric analysis. Allografts were treated with $4^{\circ}C$ antibiotic solo!ion for 24 hours for sterilization. After this, half of allografts were stored in $4^{\circ}C$ RPMI 1640 with HEPES buffer culture medium with 10% fetal bovine serum for 1 to 14 days(Group I). Another half of allografts were cryopreserved with a currently used technique (Group II). During the procurement and sterilization of arterial allografts, 22.8% and 24.4% of endothelial cell viability declined, respectively. In Group I, 11.9% of endothelial cell viability declined further steadily during 14 days of storage. In Group II, 13.7% of endothelial cell viability declined. These results show that largest loss of endothelial cell viability occurs during the nitial process. After 14 days of arterial allograft storage under $4^{\circ}C$ nutrient medium or cryopreservation, about 40% of endothelial cell viability is maintained. There were no differences between the endothelial cell viability from aortic valve leaflet, pulmonic valve leaflets, aortic wall and pulmonic wall.

  • PDF

Effects of Exercise on Endothelial Progenitor Cells in Cardiovascular Disease Patients: A Systematic Review (운동중재가 심혈관질환자의 혈관내피전구세포에 미치는 영향: 체계적 문헌고찰)

  • Kim, Ahrin;Yang, In-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.366-379
    • /
    • 2017
  • In this study, we performed a systematic review and meta-analysis to identify the effects of exercise on endothelial progenitor cells (EPCs) in patients with cardiovascular disease (CVD). We conducted database searches (Cochrane Library, PubMed, EMBASE, ScienceDirect, CINAHL, Scopus, KoreaMed, KISS, RISS, KMBASE) for the effect of exercise on cardiovascular disease, using heart disease, coronary artery disease, heart failure, cardiovascular disease, exercise, motor activity, rehabilitation, and endothelial progenitor cells as the keywords. Of the 539 studies identified, 9 met the inclusion and exclusion criteria. Comprehensive Meta-Analysis version 2.0 was used to analyze the effect size and the publication bias was checked with a funnel plot. Exercise was found to improve the VEGF (vascular endothelial growth factor), CD34+KDR+, and endothelial function, assessed via FMD (flow-mediated dilation), in the exercise vs. control groups, viz. 2.008 (95% CI 0.204-3.812), 1.399 (95% CI 0.310-2.489), and 1.881 (95% CI 0.848-2.914), respectively. Exercise improved the VEGF, number of EPCs, and endothelial function in the CVD patients. Considering the increasing prevalence and mortality rates for cardiovascular disease in Korea, the findings of this study that analyzed the effects of exercise on EPCs might provide guidelines for planning exercise interventions for patients with CVD.

GRO-${\alpha}$, IL-8 and ENA-78 : Expressed by Stimulated Endothelial Cells and Increased PMN Adhesion (활성화된 내피세포에서 GRO-${\alpha}$, IL-8 및 ENA-78의 발현양상과 호중구 부착에 미치는 영향)

  • Ryu, Ki-Chan;Kim, Yun-Seong;Kim, Yong-Ki;Kim, In-Ju;Kim, Young-Dae;Lee, Chang-Hun;Park, Do-Youn;Kim, Ji-Yeon;Ha, Tae-Jeong;Lee, Min-Ki;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.2
    • /
    • pp.145-155
    • /
    • 2002
  • Background: Inflammation, where vascular endothelial cells are activated by cytokines, recruits circulating leukocytes such as neutrophils into the tissues. Mononuclear phagocytes as well as tissue cells activated by these stimuli produce these chemokines. In this study, thr effects of IL-1 and LPS on the expression of CXC chemokines such as GRO-${\alpha}$, IL-8 and ENA-78 in vascular endothelial cells and the neutrophil adhesion effects of ENA-78 and GRO-${\alpha}$ was investigated. Methods: Human umbilical vein endothelial cells were cultured and stimulated with various concentrations of IL-1 and LPS. The concentrations of the GRO-${\alpha}$, IL-8 and ENA-78 secreted were measured using enzymelinked immunosorbent assay. The effects of ENA-78 and GRO-${\alpha}$ on neutrophil adhesion to the endothelial cells were also investigated. Results: The addition of IL-1 and LPS to the vascular endothelial cells induced GRO-${\alpha}$ IL-8 and ENA-78 secretion in a time- and dose-dependent manner. The neutrophil adhesion was also increased by induction of ENA-78 and GRO-${\alpha}$ to the vascular endothelial cells in a dose-dependent manner. Conclusion: CXC chemokines such as GRO-${\alpha}$, IL-8 and ENA-78 secreted by the vascular endothelial cells play an important role in the acute inflammatory responses by stimulating neutrophil adhesion to the vascular endothelial cells, raising the possibility that the CXC chemokines are one of the targets in the clinical application of acute inflammation.

Cilostazol Promotes the Migration of Brain Microvascular Endothelial Cells (Cilostazol에 의한 뇌혈관내피세포의 세포이동 증진 효과연구)

  • Lee, Sae-Won;Park, Jung Hwa;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1367-1375
    • /
    • 2016
  • Cilostazol is known to be a selective inhibitor of phosphodiesterase III and is generally used to treat stroke. Our previous findings showed that cilostazol enhanced capillary density through angiogenesis after focal cerebral ischemia. Angiogenesis is an important physiological process for promoting revascularization to overcome tissue ischemia. It is a multistep process consisting of endothelial cell proliferation, migration, and tubular structure formation. Here, we examined the modulatory effect of cilostazol at each step of the angiogenic mechanism by using human brain microvascular endothelial cells (HBMECs). We found that cilostazol increased the migration of HBMECs in a dose-dependent manner. However, it did not enhance HBMEC proliferation and capillary-like tube formation. We used a cDNA microarray to analyze the mechanisms of cilostazol in cell migration. We picked five candidate genes that were potentially related to cell migration, and we confirmed the gene expression levels by real-time PCR. The genes phosphoserine aminotransferase 1 (PSAT1) and CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$) were up-regulated. The genes tissue factor pathway inhibitor 2 (TFPI2), retinoic acid receptor responder 1 (RARRES1), and RARRES3 were down-regulated. Our observations suggest that cilostazol can promote angiogenesis by promoting endothelial migration. Understanding the cilostazol-modulated regulatory mechanisms in brain endothelial cells may help stimulate blood vessel formation for the treatment of ischemic diseases.

Electron Microscopic Observations of the Vascular Endothelial Cells in the Central Nervous System of Piglets Infected with Porcine Enterovirus Serotype 3 (Porcine Enterovirus 감염자돈(感染仔豚)의 중추신경계(中樞神經系) 혈관내피세포(血管內皮細胞)의 전자현미경적(電子顯微鏡的) 관찰(觀察))

  • Shin, Tae-kyun;Lee, Cha-soo
    • Korean Journal of Veterinary Research
    • /
    • v.28 no.1
    • /
    • pp.137-143
    • /
    • 1988
  • In the course of studying porcine enterovirus infection in piglets, the vascular endothelial cells in the CNS of colostrum-deprived piglets with polioence-phalomyelitis were investigated by electron microscope. The experimental piglets were orally infected with the porcine enterovirus serogroup 3 isolated in Korea and necropsied at 7 days postinoculation. Crystalline arrays of viral particles were found in the vascular endothelial cells of the spinal cord and cerebellum. Aggregates of immature viral particles were occasionally observed in the vascular endothelial cells in the meninges. The rough ER was deprived of ribosomes, irregularly dilated and associated with viral crystals, There were abundant cytoplasmic filaments, dilatation of perivascular space, perivascular cuffing, and the partial distruptions of endothelial cell membrane and basal lamina.

  • PDF

Biocompatibility of Tissue-Engineered Heart Valve Leaflets Based on Acellular Xenografts (세포를 제거한 이종 심장 판막 이식편을 사용한 조직공학 심장 판막첨의 생체 적합성에 대한 연구)

  • 이원용;성상현;김원곤
    • Journal of Chest Surgery
    • /
    • v.37 no.4
    • /
    • pp.297-306
    • /
    • 2004
  • Current artificial heart valves have several disadvantages, such as thromboembolism, limited durability, infection, and inability to grow. The solution to these problems would be to develop a tissue-engineered heart valves containing autologous cells. The aim of this study was to optimize the protocol to obtain a porcine acellular matrix and seed goat autologous endothelial cells on it, and to evaluate the biological responses of xenograft and xeno-autograft heart valves in goats. Material and Method: Fresh porcine pulmonic valves were treated with one method among 3 representative decellularization protocols (Triton-X, freeze-thawing, and NaCl-SDS). Goat venous endothelial cells were isolated and seeded onto the acellularized xenograft leaflets. Microscopic examinations were done to select the most effective method of decellularizing xenogeneic cells and seeding autologous endothelial cells. Two pulmonic valve leaflets of. 6 goats were replaced by acellularized porcine leaflets with or without seeding autologous endothelial cells while on cardiopulmonary bypass. Goats were sacrificed electively at 6 hours, 1 day, 1 week, 1 month, 3 months, and 6. months after operation. Morphologic examinations were done to see the biological responses of replaced valve leaflets. Result: The microscopic examinations showed that porcine cells were almost completely removed in the leaflets treated with NaCl-SDS. The seeded endothelial cells were more evenly preserved in NaCl-SDS treatment. All 6 goats survived the operation without complications. The xeno- autografts and xenografts showed the appearance, the remodeling process, and the cellular functions of myofibroblasts, 1 day, 1 month, and 3 months after operation, respectively. They were compatible with the native pulmonary leaflet (control group) except for the increased cellularity at 6 months. The xenografts revealed the new endothelial cell lining at that time. Conclusion: Treatment with NaCl-SDS was most effective in obtaining decellularized xenografts and facilitate seeding autologous endothelial cells. The xenografts and xeno-autografts were repopulated with myofibroblasts and endothelial cells in situ serially. Both of grafts served as a matrix for a tissue engineered heart valve and developed into autologous tissue for 6 months.

Morphometrical Analysis of Developing Renal Tubular and Glomerular Cells in Rabbit (토끼의 발생기 뇨세관과 사구체 세포들의 형태계측학적인 분석)

  • 정호중;양영철;배기원
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.449-456
    • /
    • 1998
  • Using morphometric technique, the present study was made of the kidney of rabbit embryo in the 13 days of the gestation. Their section areas of the renal tubules and the glomerular cells were compared with the those of adult rabbit, 1. In the developing renal tubule, the tubular section areas were larger than that of the adult, but the nuclear section areas of tubular calls were smaller than the adult. The microvilli of their cell surface were poorly developed, and their cytoplasm contained well developed mitochondria with euchromatic nucleus. 2. In the developing glomeruli. the nuclear section area of the cells of the parietal layer, the podocytes, and the endothelial cells were similar size, but their nuclei were larger than those of the adult. The cytopalsm of the podocytes contained well-developed rough endoplasmic reticulum, Golgi apparatus, and round mitochondria.

  • PDF

The Use of Urokinase in Ischemic Free Tissue Transplantations - An Experiment Using the Ischemic Replanted Rabbit Ear Model - (허혈성 유리조직 접합술에서 Urokinase의 효용성 - 토끼 이개를 이용한 실험 -)

  • Lee, Jun-Mo
    • Archives of Reconstructive Microsurgery
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • 장시간 허혈상태의 토끼 이개를 실험대상으로 하여 유로키나제와 헤파린을 병용 또는 단독으로 사용시와 또한 약물을 사용하지 않았을 때, 이들이 모세혈관의 개존성과 아울러 미세수술후의 조직 생존율에 미칠 수 있는 효과를 보기 위하여 허혈상태의 토끼 이개를 미세수술로 접합한 후 모세혈관으로의 혈류를 측정하기 위하여 레이저 초음파 혈류측정기(Laser doppler flowmetry)를 이용하였으며 방사선 구슬들(Cobalt-57 with plastic material with average diameter 15 micron)을 주입한 결과 유로키나제 조합에서 통계적으로 유효한 성적을 얻었다. 광학현미경 소견은 유로키나제와 헤파린을 병용한 조합에서 모세혈관내 내피세포의 배열이 유지되어 있었으며 헤파린을 사용한 조합에서도 유사한 소견을 보였으나 약물을 사용하지 않은 조합에서는 국소적인 내피세포의 배열이 결핍되어 있었다. 전자현미경 소견에서 유로키나제와 헤파린을 병용한 조합에서 내피세포가 혈관내벽에 배열되어 있었고 또 불규칙한 세포질이 돌출되어 있었다.

  • PDF

Study on Mechanical Responses Induced by Hypoxia in Porcine Isolated Cerebral Artery (돼지 적출뇌혈관의 저산소 유발 수축반응에 관하여)

  • Kim, Yoong
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.203-212
    • /
    • 1993
  • This study was designed to observe hypoxia-induced mechanical responses of porcine cerebral artery and to clarify their possible mechanisms. Hypoxia produced a transient vasoconstriction, recovering to the basal tension within 10 min and subsequent reoxygenation produced a biphasic (relaxalion-contraction) response in rings with endothelium under resting tension. Hypoxia produced a further contraction in rings precontracted with KCl or $PGF_{2{\alpha}}$, and following reoxygenation caused only sustained relaxation. Removal of the endothelium and pretreatment with nimodipine or indomethacin markedly attenuated the hypoxia- and reoxygenation-induced contractions. The KCl-induced contraction was not affected in hypoxic state, but contractions induced by $PGF_{2{\alpha}}$ or endothelin (ET) were inhibited in the hypoxia, the latter being more sensitive to the hypoxia. Upon reoxygenation, the attenuated contraction rapidly recovered to the original tension. Both hypoxia and reoxygenation significantly increased cyclic GMP content in the intact preparations, but not in the endothelium-removed ones. Acetylcholine (ACh) produced concentration-dependent relaxations in the intact endothelial rings precontracted with $PGF_{2{\alpha}}$ or endothelin, and the ACh-induced relaxation was inhibited by removal of endothelium and by hypoxia. ACh also increased cyclic GMP content in tissues pretreated with $PGF_{2{\alpha}}$ and the increase of cyclic GMP was abolished in hypoxic state. These results suggest that hypoxia- and reoxygenation-induced contractions are dependent on endothelium and extracellular calcium, and related to the release of prostaglandin-like substance(s).

  • PDF