• Title/Summary/Keyword: 내진성능보강

Search Result 402, Processing Time 0.026 seconds

Seismic Retrofit Effect for Column of Subway Tunnel Reinforced by FRP-Ductile Material Layered Composites (FRP-연성재 적층복합체로 보강된 도시철도 개착식 터널 기둥의 내진보강효과)

  • Kim, Doo-Kie;Go, Sung-Hyuk;Kim, Jin-Yeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.85-92
    • /
    • 2010
  • Recently the earthquake occurrences in Korea are likely to increase. Therefore, the facilities such as bridges and tunnels under the unexpected earthquakes need to be enhanced. Especially most of the subways previously built before 1988 have not been seismically designed, so their seismic safety requirements are required to be inspected and/or reinforced. In this study, the seismic reinforcement using FRP-ductile material layered composites was proposed to reinforce for the subway columns. Material properties of FRP-ductile material layered composites were calculated by laboratory tests considering the laminated conditions of the composites. Numerical simulations were performed using the experimental results of the specimens and the calculated properties of the composites. Seismic performance varied according to the types of composites: ductile material, number of layers, fiber orientations.

Pseudo-Dynamic Test for the Bridges Retrofitted with Laminated Rubber Bearings (적층고무받침으로 내진보강된 교량의 유사동적실험)

  • Kwak, Im-Jong;Cho, Chang-Beck;Han, Kyoung-Bong;Kim, Young-Jin;Kwak, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.43-50
    • /
    • 2005
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. For the highway bridges of which bearings are worn and dysfunctional, the validity of seismic retrofit method using laminated rubber bearings was discussed in this study. Real scale RC pier specimens without seismic details were constructed. And then, Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to these specimens. Through pseudo dynamic test method, dynamic behavior of these RC piers under earthquake was simulated and compared. From the test results, proposed seismic retrofit method was found to be valid.

Seismic Retrofit of Old Reinforced Concrete Buildings (노후 RC 건물의 내진 보강)

  • Huynh, Chanh Trung;Park, Jong-Yeol;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.150-153
    • /
    • 2010
  • 본 논문에서는 비내진 설계된 철근콘크리트 골조로 이루어진 저층의 노후공동주택의 내진성능을 향상시키기 위한 구조물의 보강방법에 대해 연구하였다. 이를 위하여 비선형 정적 해석과 시간 이력 해석을 수행하여 추가되는 철골 모멘트골조와 가새의 내진보강 효과를 검증하였다. 해석결과에 따르면 $H150{\times}150{\times}6{\times}8$로 구성된 철골 모멘트골조는 탄성구간에서는 하중의 약 1%, 구조물이 항복한 이후, 최대 3.5%까지 하중을 부담하여 자체적으로 지진하중에 대한 저항 성능은 크지 않았다. 그러나 철골 모멘트골조와 가새를 동시에 사용함으로써 접합부의 조기 파괴를 방지하고 구조물의 내진성능을 큰 폭으로 증진시킬 수 있는 것으로 나타났다.

  • PDF

Durability Performance Evaluation of PolyUrea for Seismic Retrofitting of RC Structures (구조물 내진 보강용 폴리우레아의 내구 성능 평가)

  • Cho, Chul-Min;Kim, Jang Jay Ho;Lee, Doo-Sung;Kim, Tae-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • An experimental study is needed a reinforcing method for seismic load to apply for RC structures because a lot of earthquakes have frequently happened in the world and those also collapsed infrastructures or damaged human lives. The reinforcing effect of PolyUrea (PU) appeared to be excellent under blast and impact about RC structures. In this study, Stiff Type PolyUrea (STPU) had developed by manipulating the ratio of the components of prepolymer and hardener of PU. And the durability performance evaluation of STPU for deterioration and chemical resistance has been performed. Acid environmental exposure test and ultraviolet (UV) exposure test have been performed as the durability performance evaluation for STPU. Concrete carbonation exposure test and freezing and thawing test for concrete coated with STPU have been performed. The experimental result showed that STPU has high resisting capacity and durability in all tests. Therefore, STPU would be used as seismic reinforcement materials.

New Technique on the Improvement of Earthquake-Resistant Performance for the Retrofitting of Existing Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 내진성능 개선 보강 신기술)

  • 하기주
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-81
    • /
    • 2004
  • In this study, experimental research was carried out to improve earthquake-resistant performance for the retrofitting of reinforced concrete beam-column joints using carbon fiber materials in existing reinforced concrete building. Six reinforced concrete beam-column joints were constructed and tested to evaluate the retrofitting effect of test variables, such as the retrofitting materials and retrofitting region(plastic hinge, beam-column joint) under load reversals. Test results show that retrofitting specimen(RPC-CP2, RPC-CR, RJC-CP, RJC-CR), using new materials(carbon fiber plate, carbon fiber rod and carbon fiber sheet), designed by the improvement of earthquake-resistant performance and ductility, attained more load-carrying capacity and stable hysteretic behavior.

Evaluation of Spraying Characteristics for Masonry Buildings Seismic Retrofit Fiber-Reinforced Mortar (조적조 내진보강용 섬유보강 모르타르의 분사특성 평가)

  • Hwang, Byoung-Il;Park, Jong-Pil;Yoo, Byung-Hyun;Lee, Dong-gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.37-43
    • /
    • 2020
  • The seismic reinforcement ratio of SOC facilities, such as domestic roads and railroads, is 96%. Out of approximately 7 million buildings as of 2016, only 0.51 million buildings with seismic performance were secured. Although the proportion of masonry structures is 38.8% of the total buildings, there is almost no seismic resistance, only 2.0%. To solve the problem in Korea, government-level seismic measures are being promoted, but the situation is insufficient. Overseas, the UBC research team in Vancouver, Canada, has developed and used EDCC to reinforce the seismic performance of masonry buildings. EDCC is a construction material that can secure concrete ductility capability by mixing fibers and secure deformation resistance of concrete through bridging action. It is necessary to examine various materials because EDCC is not used as a spray type of secure seismic reinforcement. In this study, as part of the research and development of spraying materials to improve the durability of masonry buildings, this study examined the spraying characteristics of fiber-reinforced mortar according to fiber use and the viscosity change according to the use of thickener. As a result, the working performance of the fiber-reinforced mortar for seismic reinforcement was improved when using 1% fiber and 1% thickener.

A Study on the Problem of Application of Seismic Performance Reinforcement Method for Urban Railways Case of Fiber and Rigid Reinforcement (섬유 및 강성 보강재료 기반 도시철도 내진성능 보강공법적용의 문제점 연구)

  • Ha, Kyoung Hwa;Park, Jae Yil;Kang, Hwi Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2020
  • In 2005, Urban railway seismic design was introduced in Rep. Of Korea, and many studies on seismic performance evaluation and reinforcement methods were conducted. In accordance with the Enforcement Decree of the Earthquake Disaster Countermeasures Act issued in March 2009, during April 2010 to October 2013, some of local governments established detailed evaluation and reinforcement measures for seismic performance of the urban railway underground structure. Afterwards, the seismic performance reinforcement of the existing urban railway structures was conducted for the sections that a long period of used until the end of 2018, and the reinforcement works are carried out by various methods using the previously studied methods. However, various reinforcing materials and construction methods using have been studied, but the classification research on the construction methods currently applied to reinforcement construction of urban railways is insufficient. The purpose of study is to analysis the cases currently applied to seismic reinforcement construction and to show the characteristics of each construction method, the reasons for its application and problems.

Proposal and Performance Verification of a Seismic Adapter for Steel Brace Connections for In-plane Reinforcement of School Buildings (학교 건축물의 면내보강을 위한 강재브레이스 접합용 내진어댑터의 상세 제안 및 성능검증)

  • Seokjae Heo;Lan Chung;In-Kwan Paik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.162-171
    • /
    • 2023
  • In this study, The details for a seismic adapter designed to easily connect concrete structures and reinforcement materials for the in-plane reinforcement of aged structures were proposed. Proposed seismic adapter was tested for performance using a dynamic simulation on a 2-story column-beam structure, scaled to half of the real size. The experimental results showed that the reinforced test specimens using the seismic adapter improved their energy dissipation capacity by 3.5 times compared to the non-reinforced specimens. It was confirmed that the seismic adapter experienced no damage within its general usage range, thus proving its effectiveness. Subsequently, upon loading until the limit of deformation (a deformation angle of 3.3%), it was observed that one of the M10 bolts connecting the adapter and the reinforcement at the lower part of the first floor broke. Considering this finding, when applying seismic retrofitting in real situations, emphasis should be placed on the design of the bolts and anchors connecting the seismic adapter. This aspect warrants further research for validation.

Nonlinear Behavior of Seismic-Strengthened Domestic School Building (국내 기존 학교건축물의 내진보강 후 비선형 거동특성)

  • Ryu, Seung Hyun;Yun, Hyun Do;Kim, Sun Woo;Lee, Kang Seok;Kim, Yong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.243-253
    • /
    • 2011
  • This paper describes an analytical study on seismic performance of domestic reinforced concrete (RC) school building not designed by seismic provision. The seismic index and the seismic performance of the building were evaluated through Japanese standard and Midas Gen, respectively. Seismic index (Is) of the RC school buildings in the X-direction is below 0.4. Based on the seismic index, for seismic-strengthening the building, infill shear wall or steel brace with a capacity of 1,300 kN was used. According to nonlinear static analysis results, the contribution of the seismic-strengthening to the shear resistance of the school building was measured to be greater than 30%. However, as expected, shear strength of school building strengthened with infill wall dropt rapidly after peak load and much narrower ductile behavior range was observed compared to steel brace strengthened building. Also, the building strengthened with steel brace showed 30% larger spectral displacement than that strengthened with infill shear wall. In nonlinear dynamic analysis, for the time history analysis, the maximum displacement showed tendency to decrease as amount of reinforcement increased, regardless of strengthening method. It was recommended that variable soil properties and earthquake record should be considered for improving seismic performance of buildings in seismic zone.

An Experiment Study on Verification for the Performance of Seismic Retrofit System Using of Dual Frame With Different Eigenperiod (진동주기가 다른 듀얼프레임을 이용한 내진보강시스템의 성능검증을 위한 실험적 연구)

  • Oh, Sang-Hoon;Choi, Kwang-Yong;Ryu, Hong-Sik;Kim, Young-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.91-100
    • /
    • 2018
  • The new seismic retrofit system in study propose is the Dual system, which aims to be applied to the seismically vulnerable low-story buildings. The Dual system is composed of existing structure, external retrofit frame and hysteretic steel dampers installed between former two components. The Dual system dissipates the energy by plastic deformation of steel damper caused by relative displacement due to the differences in stiffness, weight, and eigenperiod of each components. The dynamic test with shaking table was performed to verify the seismic performance of the proposed Dual system. As a result of the dynamic test, it is expected that the Dual system will improve the seismic performance due to the reduction of strain of 56% and the damage reduction of 93%, even though the energy is 1.84 times higher than that of the dual system. And the results of the study are presented as basic data of the study for setting the design range of the dual system.