• Title/Summary/Keyword: 내장 시스템

Search Result 1,384, Processing Time 0.025 seconds

Analysis on Mapping Accuracy of a Drone Composite Sensor: Focusing on Pre-calibration According to the Circumstances of Data Acquisition Area (드론 탑재 복합센서의 매핑 정확도 분석: 데이터 취득 환경에 따른 사전 캘리브레이션 여부를 중심으로)

  • Jeon, Ilseo;Ham, Sangwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.577-589
    • /
    • 2021
  • Drone mapping systems can be applied to many fields such as disaster damage investigation, environmental monitoring, and construction process monitoring. To integrate individual sensors attached to a drone, it was essential to undergo complicated procedures including time synchronization. Recently, a variety of composite sensors are released which consist of visual sensors and GPS/INS. Composite sensors integrate multi-sensory data internally, and they provide geotagged image files to users. Therefore, to use composite sensors in drone mapping systems, mapping accuracies from composite sensors should be examined. In this study, we analyzed the mapping accuracies of a composite sensor, focusing on the data acquisition area and pre-calibration effect. In the first experiment, we analyzed how mapping accuracy varies with the number of ground control points. When 2 GCPs were used for mapping, the total RMSE has been reduced by 40 cm from more than 1 m to about 60 cm. In the second experiment, we assessed mapping accuracies based on whether pre-calibration is conducted or not. Using a few ground control points showed the pre-calibration does not affect mapping accuracies. The formation of weak geometry of the image sequences has resulted that pre-calibration can be essential to decrease possible mapping errors. In the absence of ground control points, pre-calibration also can improve mapping errors. Based on this study, we expect future drone mapping systems using composite sensors will contribute to streamlining a survey and calibration process depending on the data acquisition circumstances.

Simulation-based Education Model for PID Control Learning (PID 제어 학습을 위한 시뮬레이션 기반의 교육 모델)

  • Seo, Hyeon-Ho;Kim, Jae-Woong;Park, Seong-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.286-293
    • /
    • 2022
  • Recently, the importance of elemental technologies constituting smart factories is increasing due to the 4th Industrial Revolution, and simulation is widely used as a tool to learn these technologies. In particular, PID control is an automatic control technique used in various fields, and most of them analyze mathematical models in certain situations or research on application development with built-in controllers. In actual educational environment requires PID simulator training as well as PID control principles. In this paper, we propose a model that enables education and practice of various PID controls through 3D simulation. The proposed model implemented virtual balls and Fan and implemented PID control by configuring a system so that the force can be lifted by the air pressure generated in the Fan. At this time, the height of the ball was expressed in a graph according to each gain value of the PID controller and then compared with the actual system, and through this, satisfactory results sufficiently applicable to the actual class were confirmed. Through the proposed model, it is expected that the rapidly increasing elemental technology of smart factories can be used in various ways in a remote classroom environment.

Multimedia Extension Instructions and Optimal Many-core Processor Architecture Exploration for Portable Ultrasonic Image Processing (휴대용 초음파 영상처리를 위한 멀티미디어 확장 명령어 및 최적의 매니코어 프로세서 구조 탐색)

  • Kang, Sung-Mo;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.1-10
    • /
    • 2012
  • This paper proposes design space exploration methodology of many-core processors including multimedia specific instructions to support high-performance and low power ultrasound imaging for portable devices. To explore the impact of multimedia instructions, we compare programs using multimedia instructions and baseline programs with a same many-core processor in terms of execution time, energy efficiency, and area efficiency. Experimental results using a $256{\times}256$ ultrasound image indicate that programs using multimedia instructions achieve 3.16 times of execution time, 8.13 times of energy efficiency, and 3.16 times of area efficiency over the baseline programs, respectively. Likewise, programs using multimedia instructions outperform the baseline programs using a $240{\times}320$ image (2.16 times of execution time, 4.04 times of energy efficiency, 2.16 times of area efficiency) as well as using a $240{\times}400$ image (2.25 times of execution time, 4.34 times of energy efficiency, 2.25 times of area efficiency). In addition, we explore optimal PE architecture of many-core processors including multimedia instructions by varying the number of PEs and memory size.

Optimization Design of Damping Devices for a Super-Tall Building Using Computational Platform (전산플랫폼을 이용한 초고층구조물의 감쇠장치 최적화 설계)

  • Joung, Bo-Ra;Lee, Sang-Hyun;Chung, Lan;Choi, Hyun-Chul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.145-152
    • /
    • 2015
  • In the study, the effects of damping devices on damping ratio increase and wind-load reduction were investigated based on the computational platform, which is one of the parametric modeling methods. The computational platform helps the designers or engineers to evaluate the efficacy of the numerous alternative structural systems for irregular Super-Tall building, which is crucial in determining the capacity and the number of the supplemental damping devices for adding the required damping ratios to the building. The inherent damping ratio was estimated based on the related domestic and foreign researches conducted by using real wind-load records. Two types of damping devices were considered: One is inter-story installation type passive control devices and the other is mass type active control devices. The supplemental damping ratio due to the damping devices was calculated by means of equivalent static analysis using an equation suggested by FEMA. The optimal design of the damping devices was conducted by using the computational platform. The structural element quantity reduction effect resulting from the installation of the damping devices could be simply assessed by proposing a wind-load reduction factor, and the effectiveness of the proposed method was verified by a numerical example of a 455m high-rise building. The comparison between roof displacement and the story shear forces by the nonlinear time history analysis and the proposed method indicated that the proposed method could simply but approximately estimate the effects of the supplemental damping devices on the roof displacement and the member force reduction.

A Hardwired Location-Aware Engine based on Weighted Maximum Likelihood Estimation for IoT Network (IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구)

  • Kim, Dong-Sun;Park, Hyun-moon;Hwang, Tae-ho;Won, Tae-ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.32-40
    • /
    • 2016
  • IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.

Macro-Micro Reconfigurable Antenna for Multi Mode & Multi Band(MMMB) Communication Systems (다중 모드 다중 대역(MMMB) 통신 환경을 위한 매크로-마이크로 주파수 재구성 안테나)

  • Yeom, In-Su;Choi, Jung-Han;Jung, Young-Bae;Kim, Dong-Ho;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1031-1041
    • /
    • 2009
  • A small microstrip monopole antenna for macro-micro frequency tuning over multiple bands is presented. The meander-shape antenna is fabricated on a conventional printed circuit board(FR-4, $\varepsilon_r=4.4$ and tan $\delta=0.02$). The antenna operates over WiBro(2.3~2.4 GHz) and WLAN a/b(2.4~2.5 GHz/5.15~5.35 GHz) service bands with an essentially constant antenna gain within each service band. Two diodes, a PIN diode and a varactor, are embedded into the antenna for frequency reconfiguration. The PIN diode is used for frequency switching(macro-tuning) between 2 GHz and 5 GHz bands while the varactor is used for frequency tuning(micro-tuning) within the service bands, 2.3~2.5 GHz and 5.15~5.35 GHz. Unwanted resonances between the two frequency bands(2 GHz and 5 GHz) are suppressed by filling up the gaps between the meander lines. The antenna gain is essentially constant and higher than 2 dBi within each service band. The measured performance of the proposed antenna system suggests the macro-micro frequency tuning techniques be useful in reconfigurable wireless communication systems.

Application for Measurement of Curing Temperature of Concrete in a Construction Site using a Wireless Sensor Network (무선센서네트워크에 의한 콘크리트 양생온도 계측에 관한 현장 적용성 연구)

  • Lee, Sung-Bok;Bae, Kee-Sun;Lee, Do-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • As the construction industry has recently been transformed by the emergence of ubiquitous and intelligent technology, there have been major changes in the management methods employed. Specifically, next-generation construction management systems have been developed that collect and analyze many pieces of information in real time by using various wireless sensors and networks. The purpose of this study is to understand the current status of Ubiquitous Sensor Networks (USN) in the construction sector, and to gain fundamental data for a system of measuring concrete curing temperature in a construction site that employs a USN. By investigating the application status of USN, it was confirmed that USN has mainly been applied to the maintenance of facilities, safety management, and quality control. In addition, a field experiment in which the curing temperature of concrete was measured using a USN was carried out to evaluate two systems with wireless sensor networks, and the applicability of these systems on site was confirmed. However, it is estimated that the embedded wireless sensor type is affected by metal equipment on site, internal battery of sensor and concrete depth, and studies to provide more stable system by USN are thus required.

Compression and Performance Evaluation of CNN Models on Embedded Board (임베디드 보드에서의 CNN 모델 압축 및 성능 검증)

  • Moon, Hyeon-Cheol;Lee, Ho-Young;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.200-207
    • /
    • 2020
  • Recently, deep neural networks such as CNN are showing excellent performance in various fields such as image classification, object recognition, visual quality enhancement, etc. However, as the model size and computational complexity of deep learning models for most applications increases, it is hard to apply neural networks to IoT and mobile environments. Therefore, neural network compression algorithms for reducing the model size while keeping the performance have been being studied. In this paper, we apply few compression methods to CNN models and evaluate their performances in the embedded environment. For evaluate the performance, the classification performance and inference time of the original CNN models and the compressed CNN models on the image inputted by the camera are evaluated in the embedded board equipped with QCS605, which is a customized AI chip. In this paper, a few CNN models of MobileNetV2, ResNet50, and VGG-16 are compressed by applying the methods of pruning and matrix decomposition. The experimental results show that the compressed models give not only the model size reduction of 1.3~11.2 times at a classification performance loss of less than 2% compared to the original model, but also the inference time reduction of 1.2~2.21 times, and the memory reduction of 1.2~3.8 times in the embedded board.

Automated Negotiation Model among Agents Using Extended Alternating-Offer Game in Electronic Commerce (전자상거래에서 확장된 교차제의 게임을 이용한 에이전트간 자동협상 모델)

  • 정종진;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.103-117
    • /
    • 2002
  • Recently, many researchers have developed applications for automated contract and negotiation using agent technologies on electronic commerce. Especially, they have tried to study negotiation mechanism applying agent instead of buyers and sellers. Traditional researches, however, often had limitations. In the researches of automated negotiation, the agents had to negotiate with the other agents for a simple negotiation issue because the mechanisms were naive. In the researches of negotiation by user interaction, the agents did not have supported the procedures and methodologies for making the automated negotiation but only supported the users by providing communication environment during the negotiation process by users. In this paper, we propose efficient negotiation model using the modified negotiation model of the game theory. In the proposed model, the agents negotiate automatically with the partner agent and make good benefits by the strategic method during the negotiation process. Each agent makes negotiation issues with user's requirements and exchanges its suggestion alternatively in each step of the negotiation process. The agent evaluates degree of satisfaction for the opposite's suggestion and uses it in the next step of suggestion. To find out the negotiation strategies of opposite side, the agent uses teaming by weights of issues. As a result, the agent improves each own benefits for the contract and reduces the unbalance of its benefits through the proposed negotiation mechanism. We implement the negotiating agents according to the proposed mechanism and prove the efficiency of the proposed model by various experimentation.

  • PDF

Application of Smartphone Camera Calibration for Close-Range Digital Photogrammetry (근접수치사진측량을 위한 스마트폰 카메라 검보정)

  • Yun, MyungHyun;Yu, Yeon;Choi, Chuluong;Park, Jinwoo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.149-160
    • /
    • 2014
  • Recently studies on application development and utilization using sensors and devices embedded in smartphones have flourished at home and abroad. This study aimed to analyze the accuracy of the images of smartphone to determine three-dimension position of close objects prior to the development of photogrammetric system applying smartphone and evaluate the feasibility to use. First of all, camera calibration was conducted on autofocus and infinite focus. Regarding camera calibration distortion model with balance system and unbalance system was used for the decision of lens distortion coefficient, the results of calibration on 16 types of projects showed that all cases were in RMS error by less than 1 mm from bundle adjustment. Also in terms of autofocus and infinite focus on S and S2 model, the pattern of distorted curve was almost the same, so it could be judged that change in distortion pattern according to focus mode is very little. The result comparison according to autofocus and infinite focus and the result comparison according to a software used for multi-image processing showed that all cases were in standard deviation less than ${\pm}3$ mm. It is judged that there is little result difference between focus mode and determination of three-dimension position by distortion model. Lastly the checkpoint performance by total station was fixed as most probable value and the checkpoint performance determined by each project was fixed as observed value to calculate statistics on residual of individual methods. The result showed that all projects had relatively large errors in the direction of Y, the direction of object distance compared to the direction of X and Z. Like above, in terms of accuracy for determination of three-dimension position for a close object, the feasibility to use smartphone camera would be enough.