• 제목/요약/키워드: 내용 기반 이미지 검색

검색결과 244건 처리시간 0.031초

주석 및 내용 기반 검색을 지원하는 동영상 정보 관리 시스템의 개발 (Development of A Video Information Management System for Supporting Caption and Content-based Searches)

  • 전미경;허진용;김인홍;강현석
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 춘계학술발표논문집
    • /
    • pp.284-289
    • /
    • 1998
  • 본 논문에서는 동영상 정보의 효율적인 관리를 위해 주석 기반 검색과 내용 기반 검색을 통합적으로 지원하는 통합 동영상 데이터 모델(Integrated Video Data Model, IVDM)를 제안한다. IVDM은 동영상 자료를 계층적으로 구조화하여 상위 수준에서는 의미 단위와 세그먼트 단위로 주석 기반 검색을 지원하고, 하위 수준에서는 이미지 인덱싱을 이용한 내용 기반 검색을 지원한다. 우리는 이 IVDM을 이용하여 MPEG-2로 압축된 동영상 정보를 관리하는 시스템(Integrated Video Information Management System, IVIMS)을 개발한다.

  • PDF

효율적인 내용 기반 이미지 검색을 위한 근사 Earth Mover's Distance (Earth Mover's Distance Approximate Earth Mover's Distance for the Efficient Content-based Image Retreival)

  • 장민희;김상욱
    • 정보처리학회논문지D
    • /
    • 제18D권5호
    • /
    • pp.323-328
    • /
    • 2011
  • 정확한 내용 기반 이미지 검색을 위하여 Earth mover's distance와 Optimal color composition distance와 같은 거리함수들이 제안되었다. 이 거리함수들은 정확도가 높은 검색 결과를 가져오지만 검색 시간이 매우 크기 때문에 대용량 데이터베이스에서 사용하기 어렵다는 문제점을 가지고 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 선형 시간에 근사 Earth mover's distance를 구하기 위한 새로운 거리 함수를 제안한다. 제안하는 방법은 선형 시간에 두 이미지의 거리를 계산하기 위하여 공간 채움 곡선을 이용한다. 다양한 실험을 통하여 본 논문에서 제안하는 방법의 우수성을 검증한다. 실험 결과, 제안하는 기법이 Earth mover's distance에 비해 약 160배 정도의 검색 속도 향상 효과를 보이면서도 매우 유사한 결과를 검색하는 것으로 나타났다.

의료 영상 검색 시스템의 설계 및 구현 (Design of Medical Image Retrieval System)

  • 문형석;엄기현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.315-318
    • /
    • 2002
  • 대부분의 의료 영상 관리 시스템이 의료 영상의 저장, 전송 등의 기본적인 기능만 지원될 뿐 상위 응용 계층에서 내용기반 검색이 지원되지 않고 있다. 본 논문에서는 이를 위해 내용 기반 검색 기능을 지원하는 의료 영상 검색 시스템을 설계 및 구현한다. 의료 영상 검색 시스템은 질의 이미지의 내용기반 검색을 위해 색-공간, 질감, 모양 특징에 의한 유사 비교 기법을 사용하고 각각의 유사 비교 검색에 의해 생성된 결과 집합들을 통할하고 최종 결과 제시를 위해 복합 질의문 계획 생성 알고리즘을 제시한다.

  • PDF

색상 및 형태 정보를 이용한 클러스터링 기반의 효과적인 이미지 검색 기법 (An Efficient Clustering Based Image Retrieval using Color and Shape features)

  • 이근섭;조정원;최병욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.363-366
    • /
    • 2000
  • 이미지의 한가지 특징(feature)만을 고려한 내용 기반 이미지 검색(content-based image retrieval)은 두가지 이상의 특징 정보를 사용했을 경우와 비교하여 정확도(precision)가 떨어져 성능을 저하시킬 수 있다 따라서 대부분의 검색 시스템에서는 색상(color)이나 형태(shape), 질감(texture) 등과 같은 이미지의 다양한 특징들을 결합하여 검색에 이용하고 있다. 본 논문에서는 이미지의 색상 및 형태 정보를 이용하여 사용자의 질의와 유사한 이미지를 제공하고, 고 차원화된 이미지의 특징들을 클러스터링(clustering) 방법을 이용하여 빠르게 검색할 수 있도록 하였으며, 또한 검색시 그룹 경계 보정 방법을 이용하여 전체 검색을 하지 않고도 전체검색 결과와 동일한 결과를 얻을 수 있는 시스템을 설계 및 구현하였다. 실험에 사용된 데이터는 2022개의 자연 영상이였으며, HSI 색상 정보와 이미지의 에지(edge) 정보를 특징 벡터로 삼았다. 실험 결과, 색상 정보 하나만을 사용한 경우보다 정확도와 재현율면에서 사용자가 원하는 이미지와 보다 유사한 결과를 검출할 수 있었을 뿐만 아니라 클러스터링을 사용함으로써 보다 빠르고, 전체검색 결과와 동일한 검색이 가능하다는 것을 입증하였다.

  • PDF

개념 기반 이미지 검색 시스템을 위한 WordNet 적용 방안 (Applying Method WordNet for Concept based Image Retrieval system)

  • 조미영;최준호;김판구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.487-489
    • /
    • 2002
  • 기존의 키워드 기반 이미지 검색에서는 의미적 내용 인식을 위해 일반적으로 어휘적 정보나 텍스트 정보를 인간이 주석 형태로 달아주었다. 그러나 이런 텍스트 정보 기반 이미지 검색은 개념적 매칭이 아닌 스트링 매칭이므로 주석을 달아놓은 단어와 정확한 매칭이 없다면 찾을 수가 없다. 이러한 문제를 해결하기 위해 본 논문에서는 개념 기반 이미지 검색 시스템을 위한 WordNet의 적용 방안에 대해 연구했다. WordNet은 단언형이 아닌 단어의 의미 즉 synset이 구성 요소라는 특징을 이용해 각각의 이미지에 텍스트 정보 대신 적합한 개념의 Synset번호를 저장한다. 그리고 검색시 개념간의 유사성 측정을 이용해 검색어와 개념적으로 유사한 모든 이미지를 검색하도록 한다.

  • PDF

특징벡터의 끌러스터링 기법을 통한 2단계 내용기반 이미지검색 시스템 (Two-phase Content-based Image Retrieval Using the Clustering of Feature Vector)

  • 조정원;최병욱
    • 전자공학회논문지CI
    • /
    • 제40권3호
    • /
    • pp.171-180
    • /
    • 2003
  • 내용기반 이미지검색이란 색상, 형태 및 질감 등의 저-수준 특징정보를 이용하여 이미지 데이터베이스를 구축하고, 이미지에 대한 검색요구가 발생했을 때 사용자가 찾고자 하는 이미지와 유사한 이미지를 제공하는 시스템으로 정의된다. 데이터베이스의 구축시간과 사용자가 질의를 입력한 후 결과를 얻을 때까지의 반응시간을 나누어 고려할 때, 사용자는 반응시간에 보다 관심을 갖는 것이 일반적이다. 내용기반 이미지검색 시스템에서 질의이미지와 데이터베이스 내의 이미지와의 유사도 비교시간이 전체 반응시간 중에서 가장 큰 비중을 차지한다. 본 논문에서는 이러한 유사도 비교시간을 최소화하기 위해 특징벡터의 클러스터링 기법을 적용한 2단계 탐색방법을 제안한다. 실험 결과를 통해 제안하는 2단계 탐색방법으로 대용량의 이미지 데이터베이스 내의 전체 이미지에 대한 원 특징정보와 비교하는 전체검색에 비해, 동일한 적합성을 보장하면서 평균적으로 2배 이상의 검색속도 향상을 확인하였으며, 이미지의 수가 더욱 커질수록 효과적임을 입증하였다.

체계적 분석 기법을 이용한 의미기반 이미지검색 분야 고찰에 관한 연구 (A Systematic Review on Concept-based Image Retrieval Research)

  • 정은경
    • 한국비블리아학회지
    • /
    • 제25권4호
    • /
    • pp.313-332
    • /
    • 2014
  • 디지털 기술과 인터넷의 발달로 인해 이미지 생산, 유통, 이용이 활발하게 이루어지고 있으며, 이미지 검색에 관한 연구도 증가하는 추세이다. 이미지검색 분야는 내용기반과 의미기반으로 나뉘어 연구가 수행되어왔으며, 문헌정보학 관점에서는 특히 의미기반의 색인과 검색에 주목해왔다. 본 연구는 체계적인 분석기법을 이용하여 의미기반 이미지검색 분야 연구 집적의 분석결과를 제시하고자 한다. 이를 위하여 데이터는 Web of Science 수록된 문헌정보학(Information Science/Library Science)분야의 이미지검색 논문 및 학술회의 논문 총 282건을 대상으로 하였으며, 국내 연구와 비교를 위해서는 DBpia에 수록된 문헌정보학 분야의 이미지검색 논문 35건을 수집하였다. 데이터 분석 과정은 우선 개괄적인 현황을 파악하기 위해서 서지사항을 분석하였고, 이와 함께 내용분석을 통한 체계적 분석 고찰을 수행하였다. 연구 결과 이미지 검색은 기존 연구에서 밝힌 바와 같이 의미기반 이미지 검색이 주된 흐름이며, 그 중에서도 이미지 색인과 기술 분야, 이미지 요구와 검색행태 분야의 연구가 주를 이루는 것으로 나타났다. 최근 연구 경향으로 주목할 만한 분야는 집합적 색인, 다언어/다문화 환경에서의 색인과 이미지 요구, 감정색인과 접근 등이다. 이용자 중심의 이미지 검색 연구 측면에서는 특정 이용자 그룹 중에서 대학생이나 대학원생이 주된 연구 대상 이용자 그룹이며 이 외에도 이미지를 업무에 사용하는 이용자 그룹에 대한 연구가 주된 경향이다. 최근에는 일반 이용자를 대상으로 일상생활 환경에서 이미지검색에 관한 연구가 등장하기 시작했다. 국내 연구와 비교하면, 논문의 수적인 차이를 제외하면 세부 연구 주제에 있어서 상당히 유사한 분포를 보이는 것으로 나타났다. 이러한 연구결과는 지금까지의 이미지 검색 분야의 연구 집적을 조명하며, 향후 발전적 방향을 제시하는데 있어서 도움이 될 것으로 기대한다.

색상과 형태를 이용한 내용 기반 영상 검색 (Content-based Image Retrieval Using Color and Shape)

  • 하정요;최미영;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권1호
    • /
    • pp.117-124
    • /
    • 2008
  • 본 논문에서는 색상정보와 형태정보를 이용한 내용기반 영상 검색방법을 제안한다. 이미지의 한 가지 특징만을 고려한 내용 기반 이미지 검색은 두 가지 이상의 특징 정보를 이용했을 때와 비교하여 정확도가 떨어져 성능을 저하시킬 수 있다. 따라서 여러 검색 시스템에서는 색상이나 형태, 질감 등과 같은 이미지의 다양한 특징들을 혼합하여 검색에 이용하고 있다. 본 연구는 각 영상의 Hue값에 대한 색상정보와 CSS(Curvature Scale Space)를 이용한 형태정보를 사용한다. 각 영상들의 특징 정보와 데이터베이스에 저장된 영상들의 특징 정보들을 비교하여 유사도 순위에 따라 후보영상들이 검색된다. 실험 결과 색상정보나 형태정보 한가지의 특징만을 사용한 경우 보다 정확도와 재현율면에서 사용자가 원하는 이미지와 보다 유사한 결과를 검출할 수 있었다.

  • PDF

색상과 모양 특징을 이용한 효율적인 이미지 검색기법 (Efficient Image Search Technique Using Color and Shape Feature)

  • 조범석;박영배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.163-165
    • /
    • 2000
  • 내용기반 이미지 검색을 위한 기존의 대부분의 기법들은 이미지 데이터에 효과적으로 적용할 수 있는 고차원의 색인구조를 고려하지 않았다. 이 연구에서는 이미지 데이터베이스에서 보다 효율적이며 정확도가 높은 검색결과를 기대할 수 있는 색상 특징 데이터 표현방법인 ECCV기법, 모양 특징 데이터 표현방법인 EPA기법을 소개한다. 또한 고차원 데이터에 대해서도 검색속도를 향상시킬 수 있는 새로운 다차원 공간 인덱스 구조인 XS-트리를 제안한다. 이 방법을 이용하면 특징표현단계에서는 차원의 수가 증가되어 저장에 필요한 공간을 많이 요구하지만 인덱싱 단계를 거치면 이미지 검색 속도가 향상되며 정확한 이미지를 검색 할 수 있는 장점이 있다.

  • PDF

특징벡터의 차원축약 기법을 이용한 2단계 내용기반 이미지검색 시스템 (Two-stage Content-based Image Retrieval Using the Dimensionality Condensation of Feature Vector)

  • 조정원;최병욱
    • 한국통신학회논문지
    • /
    • 제28권7C호
    • /
    • pp.719-725
    • /
    • 2003
  • 내용기반 이미지검색 시스템에서는 색인과정으로 색상, 형태 및 질감 등의 특징정보를 추출하여 데이터베이스에 저장한다. 전체 검색 시스템 내에서 탐색이라 함은 특징정보 데이터베이스를 이용하여 질의이미지와 유사한 특징정보를 갖는 이미지를 찾아나가는 부분 과정으로 정의할 수 있다. 본 논문에서는 내용기반 이미지검색 시스템에서의 새로운 2단계 탐색방법을 제안한다. 제안하는 방법은 사용자가 질의를 입력한 후 결과를 얻을 때까지의 반응시간 중 가장 큰 비중을 차지하는 유사도 비교시간인 탐색시간을 최소화하기 위해 Cauchy-Schwartz 부등식의 특성을 이용하여 미리 특징벡터의 차원을 축약하여 저장하고, 이를 사용하여 검색범위를 최소화함으로써 검색속도를 향상시킬 수 있다. 실험결과를 통해 차원축약 기법을 이용하는 2단계 검색방법으로 기존 상세검색 방법과 비교하여, 동일한 검색 적합성을 보장하면서 대용량의 이미지 데이터베이스에서 월등한 탐색속도 향상을 확인하였으며, 특징벡터가 더욱 고차원화 되고 이미지의 수가 더욱 늘어날수록 효과적이었다.