• 제목/요약/키워드: 내외수위

검색결과 57건 처리시간 0.026초

A Study on the Characteristics of a Reclaimed Marine Soils (Gupo Series) distributed on the Southern Coastal Area of Korea (우리나라 남해안(南海岸)에 분포(分布)된 간척지(干拓地) 토양(土壤)의 특성(特性)에 관(關)한 조사연구(調査硏究)(구포통(鳩浦統)에 관(關)하여))

  • Juug, Yeon-Tae;Um, Ki-Tae;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제9권2호
    • /
    • pp.99-105
    • /
    • 1976
  • After investigation of soil characteristics the properties of a reclaimed marine soil (Gupo series) distributed along the southern coastal areas of Korea are summarized as follows: 1. Gupo soils distributed in the southern Ria coastal area are derived from rolling to hilly materials and are poorly sorted with less influences of river fluvial action. These soils have high content of sand compared with the broad fluvio-marine soils in the western coastal areas. 2. The morphological features of the poorly drained Gupo soils are greyish brown sandy loam with a few yellowish mottles in the surface horizon and are grey sandy loam with a few gravel in the sub-strata. The ground water table remains around 10-30cm below the surface. These soils, recently reclaimed younger deposits, do not show any evidence of illuviation. 3. The "n" value (about 0.8) of the Gupo soils indicates physically unripened soils. 4. pH value of these soils shows more than 8.0 throughout the profile. Organic matter contents are extremely low (around 0.5%) except 1.2 percent in the surface horizon. C.E.C. ranges from 7 to 9m.e/100g which is lower than average in the country. The ratios of extractable cations such as Ca, Mg, Na and K of the surface horizon are 20:7:4:1. Base saturation is more than 60%. Available phosphate content is very low that is less than 25 ppm. Electric conductivity of the soils at $25^{\circ}C$ ranges 7 to 12 mmhos/cm and increased with depth. 5. According to classification of soil based on physical ripening, the Gupo soils can be classified into "Unripe soils with half-ripe sub-soils". The soils could be classified into "Hydric Haplaquents" in the original of the 7th Approximation (1960), but into "Typic Haplaqents in the supplement of 7th approximation which the physical ripening condition is not clearly expressed. Soil Taxonomy, apparently the final version of the 7th approximation, defines the soils as "Haplic Hydraquents" that clearly show the condition of physical ripening as well as other properties. Other several classification systems applied do not describe physical ripening condition of the soils.

  • PDF

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • 제8권4호
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.

Long-term Variation of Water Quality in Lake Andong (안동호 수질의 장기적인 변화)

  • Kwon, Sang-Yong;Kim, Bom-Chul;Park, Ju-Hyun;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • 제33권3호통권91호
    • /
    • pp.260-266
    • /
    • 2000
  • Water quality parameters were surveyed in Lake Andong. Turbidity, temperature, secchi disc transparency (SD), phosphorus, nitrogen and chlorophyll a concentration were measured at dam site from July 1993 to December 1998. Minimum transparency in summer was only about 2 meters in 1993 and 1994, but it decreased to about 1 meter in 1997 and 1988. Total phosphorus concentration of the epilimnion increased slightly from $11{\sim}30\;mgP/m^3$ in 1993 to $18{\sim}42\;mgP/m^3$ in 1998. Total nitrogen concentration of the epilimnion decreased slightly from $1.81{\sim}2.96\;mgN/L$ in 1993 to $1.48{\sim}2.57\;mgN/L^3$ in 1998. TN/TP weight ratio decreased from $82{\sim}281$ in 1993 to $21{\sim}143$ in 1998 due to the increase of phosphorus concentration and the decrease of nitrogen concentration. Dissolved inorganic phosphorus concentration and the decrease of nitrogen concentration. Dissolved inorganic phosphorus and nitrate nitrogen concen tration of the epilimnion were in the range of $0.9{\sim}5.3\;mgP/m^3$ and $1.36{\sim}1.68\;mgN/L$, respectively. Chlorophyll a concentration in summer was in the range of $11.0{\sim}19.1\;mg/m^3$ in 1994, 1996 and 1997, but it decreased to $2.3{\sim}6.5\;mg/m^3$ in 1998. Trophic state of Lake Andong can be classified as mesotrophic to eutrophic from TP, TN and chlorophyll a concentration.

  • PDF

Preservation of Fish Community by the Construction of the Tamjin Dam (탐진댐 건설에 따른 어류군집 보전방안)

  • Choi, Chung-Gil;Joh, Seong-Ju;Kim, Jong-Hae;Kim, Dong-Sup
    • Korean Journal of Ecology and Environment
    • /
    • 제35권3호통권99호
    • /
    • pp.237-246
    • /
    • 2002
  • Tamjin Dam is built in the upper reaches of the Tamjin River which flows through the Janghung-gun and Gangjin-gun of the Jeollanamdo, Korea. In order to map out a preservation strategy of the fish community from dam construction, We studied the distribution of fish distribution and changes of the habitat environment. we found 49 fish species inhabiting in the downstream and upstream of the Tamjin Dam. Among them, migratory fish were two species sweet smelt, Plecoglossus altivelis and freshwater eel, Anguilla japonica. The Coreoperca kawamebari which designated as a species to be protected by The Ministry of Environment of Korea was also observed. After the dam construction, reservoir would be filled with water and running water system will change to standing water system. Then the habitat and spawning space for mountain torrent fish will be reduced and the migration of migratory fish to upstream will be blocked. Through our study, we proposed several ways to protect fish community. In order to preserve the reduced habitat and spawning area of mountain torrent fish, a fishway has been diagnosed to be built in the shallow reservoir in the entrance of the upriver. The establishment of artificial spawning ground on the riverside has been recommended. In addition, We propose a creation of a shelter for fresh water eel, Anguilla japonica in areas where the depth of the water is about l0m by laying rocks. Since it is difficult for a spawning ground to be formed naturally in the reservoir due to the year-round changes in water level, We suggested a floating spawning facility using an artificial fixture. In the downstream of the dam, a waterway-style habitat and spawning ground in the river and increasing the diversity and abundance of fish fauna in the Tamjin River. A low-cost and highly efficient operational fishway has been recommended so that migratory fish such as Plecoglossus altivelis (sweetfish) can migrate from the lower reaches to the upper reaches of the river.

The Effects of Soil factors on the Growth in Populus euramericana Guinier (토양인자(土壤因子)가 이태리 포플러의 생장(生長)에 미치는 영향)

  • Son, Doo Sik;Hong, Sung Chun;Joo, Sung Hyun
    • Current Research on Agriculture and Life Sciences
    • /
    • 제14권
    • /
    • pp.49-60
    • /
    • 1996
  • In order to evaluate soil factors affecting the growth of Italian poplar, 23 areas planted with Italian poplar were surveyed. These 23 areas were classified into 3 categories, river-side, fallow-land and hill-side. The growth performance and soil factors for each area were investigated. The growth of Italian poplar at river-side was shown to be superior to that of fallow-land and fill-side. The rates of growth for fallow-land and hill-side are decreased by 8% and 21% compared to those of river-side, respectively. This suggests that plantation of Italian poplar at hill-side would not be profitable. Soil conditions of high productive area appeared liquid phase 20%, porosity 45%, water holding capacity 35 - 40%, soil hardness $1kg/cm^3$. pH 6 and rich in organic matter and total nitrogen. The results of factor analysis for soil factors affecting to Italian poplar growth that showed eigenvalue over 1 and communality value over 70% explained factor 1 : liquid phase, porosity and water holding capacity, factor 2 : pH and calcium, and factor 3 : soil hardness. This suggests that physical characteristics of soil is more important than chemical characteristics for Italian poplar growth. Multiregerssion analysis was conducted between diameter growth and soil hardness, liquid phase and calcium. The t-values for each independent variables showed significance at 1 - 10% level, but water holding capacity and pH are not significant. It is supposed that sites suitable to Italian poplar were alluvial plain of sandy loam or part of banking soil, well-ventilating soil, lower soil hardness, apposite soil moisture absorbing with about 100cm of ground water level, plentiful organic matters and total nitrogen and little acidity soil.

  • PDF

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 대한자원환경지질학회 2001년도 제17차 공동학술강연회 및 춘계학술답사
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제15권3호
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF