• Title/Summary/Keyword: 내열성

Search Result 998, Processing Time 0.027 seconds

Characteristics of Polyester Polymer Concrete Using Spherical Aggregates from Industrial By-Products(II)(Use of Fly Ash and Atomizing Reduction Steel Slag) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(II) (플라이 애쉬와 아토마이징 제강 환원슬래그 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.364-371
    • /
    • 2015
  • For the cost down of polymer concrete, It is very important to reduce the use amount of polymer binder, which occupies most of the production cost of polymer concrete. Fly ash and atomizing reduction steel slag are spherical materials obtained from industrial by-products. Spherical atomizing reduction steel slag was manufactured using steel slag from reduction process of ladle furnace by atomizing technology. To investigate the physical properties of polymer concrete, polymer concrete specimens were prepared with the various proportions of polymer binder and replacement ratios of atomizing steel slag. Results showed that compressive and flexural strengths of the specimens were remarkably increased with the addition amount of polymer binder and the replacement ratios of atomizing steel slag. In the hot water resistance test, compressive strength, flexural strength, bulk density and average pore diameter decreased but total pore volume and pore diameter increased. We found that polymer concrete developed in this study reduced the amount of polymer binder by 18.2% compared to the conventional product because of the remarkable improvement of workability of polymer concrete using spherical fly ash and atomizing reduction steel slag instead of calcium carbonate (filler) and river sand (fine aggregate).

A Study on the Hardware Cost Estimation Equation of Professional Service Robot (전문서비스 로봇 하드웨어 비용추정 관계식 개발에 관한 연구)

  • Lee, Jungsoo;Min, Jeongtack;Choi, Yeon-Seo;Park, Myeongjun;Sohn, Dongseop
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.89-96
    • /
    • 2018
  • In this paper, we proposed a parametric estimation method for estimating H/W cost by using the development data of professional service robot in Korea. In addition, we derived the factors and weights that we can estimate the costs depending on the application environmental conditions of the robot. For the analysis, we developed the equation of professional service robot cost estimation using parametric method. We also derived the adjustment factors and following weights through FGI and Delphi for environmental conditions. We have developed a cost estimation equation that reflects the weight, volume, and manufacturing difficulty, and can derive a relational equation that reflects the environmental factors(dust/water, heat/cold, safety, test, technology innovation). This provides an objective basis for estimating the cost of professional service robots and will lead to ongoing research for estimating the H/W development cost of professional service robots. In the future, we will increase reliability by collecting abundant data, and will strengthen models through finding functional factors.

Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature (Ni기 초내열합금 GTD111 DS의 고온 저주기 피로수명 예측)

  • Kim, Jin Yeol;Yoon, Dong Hyun;Kim, Jae Hoon;Bae, Si Yeon;Chang, Sung Yong;Chang, Sung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.765-770
    • /
    • 2017
  • GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, $760^{\circ}C$, $870^{\circ}C$, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and $760^{\circ}C$; however, tests conducted at $870^{\circ}C$ showed cyclic softening response. Stress relaxation was observed at $870^{\circ}C$ because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

A Simplified Closed Static Chamber Method for Measuring Methane Flux in Paddy Soils (논토양(土壤)의 메탄 배출(排出) 측정(測定)을 위한 간역폐쇄정태(簡易閉鎖靜態) Chamber법(法))

  • Shin, Yong-Kwang;Lee, Yang-Soo;Yun, Seong-Ho;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.183-190
    • /
    • 1995
  • Various factors such as sampling height in the chamber, sampling interval, sampling time at daytime and the effects of pedoturbation on methane emission during chamber installation were evaluated using a simplified closed static chamber method to measure methane flux in paddy soils. Sampling height of the chamber for representative samples was 65cm. An additional DC fan was required to attain an even methane gradient in the chamber. Considering the change of methane concentration and air temperature in the chamber, sampling is recommended to finish within 30 minutes after starting sampling. The aim of setting DC fan in the chamber was to get the thermal equilibrium in the chamber as well as the representative samples. Suitable time to collect the gas samples representing the day's methane flux was 0900~1200 hours. Gas sampling was possible even after installation of small chambers if the elapsed time was more than 6 hours and supporting stand would be to be added to minimize pedoturbation.

  • PDF

Temperature Dependent Creep Properties of Directionally Solidified Ni-based Superlloy CM247LC (일방향 응고 니켈기 초내열 합금 CM247LC의 온도에 따른 크리프 특성)

  • Choi, Baig-Gyu;Do, Jeonghyeon;Jung, Joong Eun;Seok, Woo-Young;Lee, Yu-Hwa;Kim, In Soo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.505-515
    • /
    • 2021
  • Creep properties of directionally solidified Ni-based superalloy CM247LC under various temperature and stress conditions have been investigated. In the heat-treated specimen, some portion of eutectic γ-γ' remained, and uniform cubic γ' was observed in the dendrites. At low temperature (750℃) and high stress condition, a large amount of deformation occurred during the primary creep, while the tertiary creep region accounted for most of the creep deformation under high temperature and low stress condition. γ' particles are sheared by dislocation dissociated into super lattice partial dislocations separated by stacking faults at 750℃. No stacking faults in γ' were found at and above 850℃ due to the temperature dependence of the stacking fault energy. Raft structure of γ' was found after creep test at high temperature of 950℃ and 1000℃. At 850℃, the deformation mechanism was shown to be dependent on the stress condition, and so rafting was observed only under low stress condition.

Magnetic Induction Soldering Process for Mounting Electronic Components on Low Heat Resistance Substrate Materials (저 내열 기판소재 전자부품 실장을 위한 자기유도 솔더링)

  • Youngdo Kim;Jungsik Choi;Min-Su Kim;Dongjin Kim;Yong-Ho Ko;Myung-Jin Chung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • Due to the miniaturization and multifunctionality of electronic devices, a surface mount technology in the form of molded interconnect devices (MID), which directly forms electrodes and circuits on the plastic injection parts and mounts components and parts on them, is being introduced to overcome the limitations in the mounting area of electronic components. However, when using plastic injection parts with low thermal stability, there are difficulties in mounting components through the conventional reflow process. In this study, we developed a process that utilizes induction heating, which can selectively heat specific areas or materials, to melt solder and mount components without causing any thermal damage to the plastic. We designed the shape of an induction heating Cu coil that can concentrate the magnetic flux on the area to be heated, and verified the concentration of the magnetic flux and the degree of heating on the pad part through finite element method (FEM). LEDs, capacitors, resistors, and connectors were mounted on a polycarbonate substrate using induction heating to verify the mounting process, and their functionality was confirmed. We presented the applicability of a selective heating process through magnetic induction that can overcome the limitations of the reflow method.

Effects of High Pressure on Quality Stability of Fresh Fruit Puree and Vegetable Extracts During Storage (고압처리가 신선 과채음료의 저장기간 중 품질 안정성에 미치는 영향)

  • Kim, Young-Kyung;Lee, Yong-Hyun;Iwahashi, Yumiko
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.190-195
    • /
    • 2010
  • Pressure, used as a minimal processing technology in the food industry, is a valuable tool ensuring microbiologically safe, shelf-stable fruit and vegetable production. Pressure could be used to deliver a greater variety of minimally processed products, as demanded by today's consumers. Weevaluated the effect of <400 MPa pressure, applied during chilling, on fresh fruit purees (strawberry, kiwi, aloe, and pomegranate) and vegetable extracts (from carrot and spinach) during cold storage (<$10^{\circ}C$) for 15-20 days. Samples were prepared in a processing facility in which total plate counts of falling and floating bacteria were controlled at $1{\times}100-10^1$ CFU/plate and $1{\times}10^2-10^3$ $CFU/m^3$ under conditions of $21-25^{\circ}C$ and 55-60% relative humidity. The aerobic plate counts of raw materials were less than $1{\times}10^3$ CFU/g. Evaluation parameters included microbiological safety, vitamin content, and sensory qualities. Although the overall quality of non-treated samples deteriorated with storage time at $10^{\circ}C$, samples pressurized at 250-350 MPa at $5-7^{\circ}C$ for 10 min showed less change, with no significant difference in microbiological safety, vitamin content, or sensory quality. The use of pressure extended the shelf-life during storage at $10^{\circ}C$.

Studies on Garlic Mosaic Virus -lts isolation, symptom expression in test plants, physical properties, purification, serology and electron microscopy- (마늘 모자이크 바이러스에 관한 연구 -마늘 모자이크 바이러스의 분리, 검정식물상의 반응, 물리적성질, 순화, 혈청반응 및 전자현미경적관찰-)

  • La Yong-Joon
    • Korean journal of applied entomology
    • /
    • v.12 no.3
    • /
    • pp.93-107
    • /
    • 1973
  • Garlic (Allium sativum L.) is an important vegetable crop for the Korean people and has long been cultivated extensively in Korea. More recently it has gained importance as a source of certain pharmaceuticals. This additional use has also contributed to the increasing demand for Korean garlic. Garlic has been propagated vegetatively for a long time without control measures against virus diseases. As a result it is presumed that most of the garlic varieties in Korea may have degenerated. The production of virus-free plants offers the most feasible way to control the virus diseases of garlic. However, little is known about garlic viruses both domestically and in foreign countries. More basic information regarding garlic viruses is needed before a sound approach to the control of these diseases can be developed. Currently garlic mosaic disease is most prevalent in plantings throughout Korea and is considered to be the most important disease of garlic in Korea. Because of this importance, studies were initiated to isolate and characterize the garlic mosaic virus. Symptom expression in test plants, physical properties, purification, serological reaction and morphological characteristics of the garlic mosaic virus were determined. Results of these studies are summarized as follows. 1. Surveys made throughout the important garlic growing areas in Korea during 1970-1972 revealed that most of the garlic plants were heavily infected with mosaic disease. 2. A strain of garlic mosaic virus was obtained from infected garlic leaves and transmitted mechanically to Chenopodium amaranticolor by single lesion isolation technique. 3. The symptom expression of this garlic mosaic virus isolate was examined on 26 species of test plants. Among these, Chenopodium amaranticolor, C. quince, C. album and C. koreanse expressed chlorotic local lesions on inoculated leaves 11-12 days after mechanical inoculation with infective sap. The remaining 22 species showed no symptoms and no virus was recovered from them whet back-inoculated to C. amaranticolor. 4. Among the four species of Chtnopodium mentioned above, C. amaranticolor and C. quinoa appear to be the most suitable local lesion test plants for garlic mosaic virus. 5. Cloves and top·sets originating from mosaic infected garlic plants were $100\%$ infected with the same virus. Consequently the garlic mosaic virus is successively transmitted through infected cloves and top-sets. 6. Garlic mosaic virus was mechanically transmitted to C, amaranticolor when inoculations were made with infective sap of cloves and top-sets. 7. Physical properties of the garlic mosaic virus as determined by inoculation onto C. amaranticolor were as follows. Thermal inactivation point: $65-70^{\circ}C$, Dilution end poiut: $10^-2-10^-3$, Aging in vitro: 2 days. 8. Electron microscopic examination of the garlic mosaic virus revealed long rod shaped particles measuring 1200-1250mu. 9. Garlic mosaic virus was purified from leaf materials of C. amaranticolor by using two cycles of differential centrifugation followed by Sephadex gel filtration. 10. Garlic mosaic virus was successfully detected from infected garlic cloves and top-sets by a serological microprecipitin test. 11 Serological tests of 150 garlic cloves and 30 top-sets collected randomly from seperated plants throughout five different garlic growing regions in Korea revealed $100\%$ infection with garlic mosaic virus. Accordingly it is concluded that most of the garlic cloves and top-sets now being used for propagation in Korea are carriers of the garlic mosaic virus. 12. Serological studies revealed that the garlic mosaic virus is not related with potato viruses X, Y, S and M. 13. Because of the difficulty in securing mosaic virus-free garlic plants, direct inoculation with isolated virus to the garlic plants was not accomplished. Results of the present study, however, indicate that the virus isolate used here is the causal virus of the garlic mosaic disease in Korea.

  • PDF

Application of Predictive Microbiology for Shelf-life Estimation of Tteokgalbi Containing Dietary Fiber from Rice Bran (예측미생물학을 활용한 미강 식이섬유 함유 떡갈비의 유통기한 설정)

  • Heo, Chan;Kim, Hyoun-Wook;Choi, Yun-Sang;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.2
    • /
    • pp.232-239
    • /
    • 2008
  • The objective of this study is to estimate the shelf-life of Tteokgalbi containing dietary fiber extracted from rice bran by using the predictive microbiology. This Tteokgalbi was made with 0%, 1%, 2%, and 3% dietary fiber. The number of total viable cells, anaerobic, psychrotrophic, and heat-stable bacteria and coliforms was calculated during 15 days of storage under $4{\pm}1^{\circ}C$ and the obtained data was applied to Baranyi function. The evaluation of fitness between predicted and observed data showed that these were matched in a satisfactory way. Heat-stable bacteria was detected lower than <1 log CFU/g and coliforms were not detected during the storage. The changes of total viable cells and psychrotrophic bacteria in Tteokgalbi were increased gradually, but dramatically increased after 3 days of storage. The models of total viable cells and anaerobic bacteria showed very similar growth trends and values of growth parameters each other. The estimated shelf-life of each Tteokgalbi was calculated from the predictive model of total viable cells and the estimated shelf-life was 1.7, 2.3, 2.3, and 2.4 days, respectively. The results suggested that the prediction of bacteria growth could be used to evaluate the microbiological safety and determine the shelf-life of Tteokgalbi as ready-to-eat food in the local market.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.