• Title/Summary/Keyword: 내부 배기가스 제순환

Search Result 2, Processing Time 0.016 seconds

Efficiency Investigation of Vanishing Composting Machine Using Exhaust gas Recirculation system (배기가스순환시스템을 적용한 소멸 퇴비화장치의 효율검토)

  • Phae, Chae-Gun;Kim, Jong-Chan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.93-104
    • /
    • 1999
  • Existing composting system was improved to have a high performance for organic degradation, deodorization and energy reduction. Compared with conventional devices, this developed system uses the heat recovered from platinum catalytic tower by three times heat exchange in which 65% of exhaust gas was recirculated. Evaporation of water was made easy by maintaining negative pressure in entire system. It was possible for reaction to be maintained steadily by microorganism agent. The optimum mixing volume ratio of garbage to sawdust was 15:1 contrary to 20:1 in conventional one. Moreover, aerobic condition was maintained efficiently. Effects obtained by using a inner circulation system were as follows. It was possible to reduce the ammonia causing offensive odor and verified that consumption of electricity cut down to 1/3 with reduction of exhaust gas inflowing. According to this inner circulation, the optimum air flow was $0.44m^3$ to 100kg treatment capacity. The electricity consumption was changed in proportion to inflowing air volume.

  • PDF

A Study on Combustion Characteristics of Pre-mixed $CH_4$-air by Flame Trap (플레임트랩에 의한 메탄-공기 예혼합기의 연소특성에 관한 연구)

  • Kim, Deok-Ho;Lee, Jai-Hyo;Choi, Su-Jin;Cho, Gyu-Back;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.22-28
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And, it is extremely difficult to increase gasoline engine efficiency and to reduce $NO_X$ and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper, a flame trap was used to simulate internal EGR(exhaust gas recirculation) effect. An experimental study was carried out to find combustion characteristics using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). Flame propagation photos and pressure signals were acquired to verify the flame trap effect. The flame trap creates high speed burned gas jet. It achieves higher flame propagation speed and more stable combustion due to the effect of geometry and burned gas jet.