• Title/Summary/Keyword: 내부 공극

Search Result 290, Processing Time 0.019 seconds

A Study of Locally Changing Pore Characteristics and Hydraulic Anisotropy due to Bedding of Porous Sandstone (다공질 사암의 층리에 따른 국부적 공극특성 변화와 수리 이방성 특성)

  • Yang, Hwa-Young;Kim, Hanna;Kim, Kyeongmin;Kim, Kwang Yeom;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.228-240
    • /
    • 2013
  • Anisotropy observed in sedimentary rock such as sandstone is mainly caused by existence of bedding consequently influencing on its hydraulic characteristics. The aim of this study is to investigate the influence of locally changing pore structure due to bedding on the hydraulic anisotropy of sandstone, in terms of localized porosity. X-ray CT scan is applied to observe the internal pore structures which is hard to be seen by other experimental methods. Permeability test is also conducted for samples cored at every $15^{\circ}$ from $0^{\circ}$ to $90^{\circ}$ with respect to bedding plane. As a result, the permeability anisotropy is manifest having 1.8 of anisotropy ratio ($k_{90^{\circ}}/k_{0^{\circ}}$) and corresponds with the anisotropy of porosity due to bedding.

Influence of the Soluble Salt on the Exfoliation of the Stone Monument (수용성염이 석조문화재 표면 박리현상에 미치는 영향)

  • Do, Jin-Young;Lim, Kwon-Woong
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.121-134
    • /
    • 2008
  • The mechanism of stone exfoliation and its cause in relation to chemical weathering by soluble salt were studied. Chemical, mineralogical and physical analysis was performed in exfoliation samples from stone monuments. The representative salt is gypsum in the exfoliation samples. In order to understand the salt reaction, stone samples(tuff and granite) were treated with two type of the salt, gypsum and sodium sulfate, which have different solubility. The capillary water uptakes are slight increased in impregnated with Na2SO4 and weathering simulation of two rock types. It means that the rock is deteriorated in the near of the surface by $Na_2SO_4$. $CaSO_4{\cdot}2H_2O$ bring out the thicker exfoliation than $Na_2SO_4$ because it is penetrated into the deeper zone and amount of accumulated salt is more abundant in the inner part than in the near of the surface. The exfoliation was formed in the tuff by salt treatment and 30cycle of weathering simulation, but there are not significant symptoms of exfoliation in the granite by same condition. This result was caused by the different capillary water uptakes and porosity of the rocks. In the tuff, salt solutions are penetrated into the inner part due to its high capillary water uptakes and porosity but the granite, which has low value relatively, can be formed thinner exfoliation.

  • PDF

The Influence of Nano Synthesized Polymer Paint on Durability of Concrete (나노합성 무기질 폴리머계 표면처리제가 콘크리트의 내구성에 미치는 영향)

  • Beak, Jong-Myeong;Park, Youg-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • This experiment was compared and analyzed between the original surface paint through chloride penetration, neutralization, freeze-thaw and chemical corrosion resistance measuring internal structure and volume of voids in order to evaluate the effect of increase in durability of the newly modeled nano synthesized polymer paint painted on concrete surface which results improvement on air permeability to increase the durability of concrete structures. The test result of measuring volume of void and inner structure, concrete, spreaded with nano synthesized polymer paint, showed decreasing trend of pore volume in the range of less than $0.1{\mu}m$ and more than $0.3{\mu}m$. Also, using an electron microscope inside showed tightness of hydration texture. Chloride penetration depth of concrete, painted with nano synthesized polymer paint, was decreased more than 92% compared to non-painted concrete and 70% with water-based epoxy painted concrete. Especially, chemical corrosion resistance test set with aqueous solution of 5% sulfuric acid, non-painted concrete and water-based epoxy painted concrete showed weight loss of 4% after dipping for 12 days. On the other hand, concrete painted with nano synthesized polymer paint showed 1.7% weight loss under the same condition. Also, it showed great result of appearance under the criteria of Tsivilis et al.

Properties Vacuum · Reduced Air pressure Concrete (진공감압조건에서 콘크리트의 물리적 특성)

  • 이세현;심종우;서치호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • Vacuum concrete manufactured by vacuuming and decompressing fresh concrete. It is known to have improvement on abrasion and strength by making a structural confinement through elimination of internal gap. It has been implemented on buildings floors, concrete dam, etc. in developed countries. This study was aimed to monitor changes in physical characteristics such as strength and slump of concrete influenced by changes of vacuum, decompression level and combination condition during concrete manufacturing process. The results are as follows: It is indicated that decompressed concrete shoved increase in unit weight and compressive strength by compact compression phenomenon influenced by decrease in internal gap caused by diminishing oxygen. However, continuous research is necessary to resolve problems on construction, design and durability.

Mechanical Characteristics of Basalt in Jeju Island with Relation to Porosity (공극률에 따른 제주도 현무암의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Youngchan;Yang, Soonbo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1215-1225
    • /
    • 2014
  • Volcanic rocks formed from magma near the earth surface commonly show vesicular structures due to exsolution of gaseous phases in magma. The distinction and the amount of vesicles are greatly various, but there are few researches on the effect of volume percentage of vesicles on the mechanical properties. In this study, mechanical characteristics of volcanic rocks in relation to the porosity are investigated through experimental tests with Jeju basalt. Two methods (the buoyancy method and the caliper method) are adopted for measuring porosity. And unconfined compressive strength, elastic modulus, tensile strength, and elastic wave velocity are plotted against porosity in order to propose the empirical relations after the regression analysis. Also, unconfined compressive strength and the elastic modulus in relation to the elastic wave velocity are proposed with the analysis. In the case of vesicular rocks with more than 5% porosity, it is found that the buoyancy method provides more accurate estimation of porosity than the caliper method. The unconfined compressive strength, the elastic modulus, and the elastic wave velocity decrease curvilinearly with increasing in porosity. Also, the unconfined compressive strength and the elastic modulus increase linearly with increasing in elastic wave velocity.

Polymer coating for controlled release of biostimulants from Biostimulant balls (생물활성촉진제의 용출율 제어를 위한 폴리머 코팅)

  • Song, Young-Chae;Woo, Jung-Hui;Senthilkumar, Palaninaicker
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.46-47
    • /
    • 2013
  • We prepared biostimulant balls using sea sediment mixed with biostimulants viz acetate, nitrate and sulfate. The Biostimulant balls were coated with Cellulose Acetate (CA) and Polysulfone (PS) to control the release of the biostimulants. SEM images showed that CA coating was porous and irregular in the inside and very uniform and tight like beehive while PS coating was the same in the inside and outside and not porous. Biostimulants release was found to be high in sea water compared to distilled water. The release of nitrate was higher compared to sulfate. In turbulent environment the release of bionutrients was 50% higher than static environment.

  • PDF

Experimental Study on Enhancing Adhesion-Reactive Acrylic Compounds for Pore Filling in Additive Manufactured Metal Lattice Structures (금속 적층 제조 격자 구조체의 공극 충진용 부착력 증진 반응성 아크릴 화합물에 대한 실험적 연구)

  • Park, Kwang-Min;Park, Myung-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.143-149
    • /
    • 2020
  • The purpose of this study is to manufacture a variable density - hybrid lattice structure control by filling the pore of the metal addictive manufactured lattice structure with lightweight reactive acrylic compounds(RAC). To apply the variable density - hybrid lattice structure to the construction industry, the enhancing adhesion - reactive acrylic compounds(EA-RAC) which increased the adhesion strength was manufactured by adding ordinary portland cement to the RAC. Finally, the EA-RAC was filled into the lattice structure to test the specific density, water absorption, and adhesion strength of the variable density - hybrid lattice structure. The results were obtained with density controllable, water absorption less than 1.0%, and 1-day bonding strength of 1.78 MPa to 1.98 MPa.

Analysis of Air Void Systems in Latex-Modified Concretes with Cement Types (시멘트 종류에 따른 라텍스개질 콘크리트의 미세공극 구조 분석)

  • Yun, Kyong-Ku;Jeong, Won-Kyong;Kim, Ki-Heun;Kim, Kyong-Jin
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.73-82
    • /
    • 2005
  • Linear traverse method and point count method described at ASTM have been widely used to estimate the air void system in hardened concrete. These methods, however, are rarely used at present, because they require many efforts and time consuming works. Also these results depend on each person's decision, and are not repeatable. Thus, new image analysis method using microscope and computer processes has been approached for analyzing air void system in hardened concrete. The purpose of this study was to analysis the air void systems in latex-modified concretes using a reasonable and objective image analysis method with main experimental variables such as cement types(ordinary portland cement, rapid setting cement) and latex contents(0%,15%). In the results of this study, the use of polymer latex showed that it could be attributed to its air void systems, due to the fact that the latex emulsion acts as an air-entraining agent, which thus generally guarantees an adequate air-void system.

  • PDF

Effects of inorganic fluosilicate agent on the properties of concrete (규불화염계 혼화제가 콘크리트의 물성에 미치는 영향)

  • Lee, Sang-Ho;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.187-194
    • /
    • 2005
  • This paper deals with a waterproof and mechanical feature of concrete using an inorganic self waterproof agent. The waterproof agents having been used in our country were a membrane agent, penetration agent and an organic waterproof agent. However, these agents have a lot of problems such as losing the effect of waterproof in the environment of lots of water, the difficulty of dispersion. For the clear of problems of these water -proof agents, we used the inorganic waterproof agent. This agent was made from inorganic fluosilicate. Generally, a waterproof agent has been used only for the waterproof effect. In this paper, however through the some tests of concrete using the inorganic self waterproof agent, we recognized that the concrete using the agent is more excellent in some peculiar properties than general concrete's properties. In this paper, we performed compressive strength, permeability, pore volume test, etc. As a result, the concrete of using the agent is more excellent in economy, waterproof, compressive strength.

Effects of Fine Aggregate Size on Penetration Performances of SSPM (잔골재의 입도분포가 SSPM의 침투성능에 미치는 영향)

  • Yoon, Hyun-Kwang;Youn, Da-Ae;Lee, Chan-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2019
  • This study was conducted to evaluate the penetration performance of the Silane Surface Protection Material (SSPM) penetrating the micro pore of concrete surface. The results was indicated microstructure, porosity and penetration depth of applied SSPM. Silica sand and conventional sand were used as fine aggregate in mortar. And liquid and cream types SSPM were used. The amounts of SPM were applied the 127, 255, 382, 510 g/m2 on the surface of mortar. The penetration depth specimens were made with $100{\times}30mm$ in according with KS F 4930. Penetration depth was evaluated according to KS F 4930, divide specimen and then spraying with water in cross section of specimens, and measure the depth of the non-wetted area. The microstructure result of mortar applied SSPM, it was obtained liquid and cream SSPM in mortar. The porosity results of SSPM application specimens were improved with than that of plain specimens. Test results indicated that the penetration depth of SPM were improved with increasing in amounts of SSPM. As a result of test, application of SSPM to concrete surface, it will improve durability.