• Title/Summary/Keyword: 내부유동특성

Search Result 712, Processing Time 0.024 seconds

Investigation of Turbulent Flow Effect in Segmented Arc Heater (아크히터 내부의 난류 효과에 대한 고찰)

  • Lee, Jeong-Il;Kim, Kyu-Hong;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Flows in segmented arc-heaters have been calculated for prediction of experimental operating condition or for analysis and design of arc-heater itself. Some researchers succeeded in calculating accurately inner flows of a arc-heater, but could not made mathematical models which satisfy various operating conditions for many arc-heaters. this study is forced on turbulence for the generality of mathematical model. Instead of algebraic turbulence models which are frequently used for calculating inner flow of arc-heater, two equation turbulent models are used. Prediction results agree well with experiment data and it was confirmed that $k-\varepsilon$ two equation turbulence model is appropriate for a flow in an arc heater throughout extensive numerical testing.

Suggestion of the Analysis Model and Verification on Rotating Flow in Stirred Tanks Using CFD (전산유체역학을 이용한 교반 탱크 내에서의 회전유동에 대한 해석 모델의 제안 및 검증)

  • Hwang, Seung Sik;Yong, Cho Hwan;Choi, Gyuhong;Shin, Dohghoon;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.28-37
    • /
    • 2013
  • Stirred tank is widely used in various industries for mixing operations and chemical reactions for single- or multi-phase fluid systems. For designing agitator of high performance, quantity data of internal flow characteristics influenced by mixing performance are definitely confirmed but quantity analysis about the transient flow characteristics of complicate structure is recognized as difficult problem in the present. In this study, two models of commercial CFD code Fluent 6.3 used to propose suitable for the tank analysis. Agitation of Stirred tank is analyzed using a mixed model and the flow in the stirred tank is analyzed using a standard k-${\varepsilon}$ model. Multiple reference frame(MRF) and Sliding mesh(SM), the analysis techniques were used For compare a result of CFD with a visualization experiment result, to grasp internal flow and mixing characteristic in stirred tank and to present fundamental analysis method.

Internal Flow Characteristics of Simulated Dual Pulse Rocket Motor by Using the Hot Gas and Cold Gas (Hot Gas와 Cold Gas를 이용한 모사 이중펄스 로켓 추진기관의 내부 유동 특성)

  • Cho, Kihong;Park, Jungho;Kim, Euiyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Dual pulse rocket motor is a variant of solid rocket motor with two propellant grain separated by a pulse separation device. The major performance of such a rocket motor is influenced by the change in the hole area of pulse separation device to nozzle throat area ratio. In this study, we performed flow analysis to investigate the internal flow characteristics according to the pulse separation device hole area to nozzle throat area ratio change. Gases used flow analysis were used combustion gas of HTPB/AP composite propellant and nitrogen gas. Flow analysis results of the dual pulse rocket motor were validated by comparison with experimental results of pneumatics. Commercial CFD code ANSYS FLUENT 14.5 is used in this study to simulate flow analysis.

Proper Orthogonal Decomposition Analysis of Flow Characteristics in Hybrid Rocket Engine (POD에 의한 하이브리드 로켓 연소실의 유동특성 해석)

  • Park, Charyeom;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.383-389
    • /
    • 2014
  • POD analysis has been done to investigate the internal flow characteristics using LES calculation results of hybrid rocket combustion chamber. The special emphasis was put on the change in the mode energy distribution caused by the installation of diaphragm compared to the baseline case. Also the comparison was made to investigate the effect of wall blowing on the changes in the mode energy between the regions near and far from the diaphragm. For baseline case, POD results clearly distinguish the primary mode containing most of flow energy from the rest of flow modes (2-9 mode) depicting small scale modes. Also, the increase in the energy of flow modes 2-5 is responsible for the formation of relatively large scale structures due to diaphragm. In addition, the comparison of mode energy distributions of flow fields with diaphragm shows similar patterns in both wall blowing and no blowing case. This implies that the local increase in regression rate just after the diaphragm is directly associated with the increase in energy distributions of 2-5 modes.

A CFD Study of the Supersonic Ejector-Pump Flows (초음속 이젝터 펌프 유동에 관한 수치해석)

  • 이영기;김희동;서태원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.58-66
    • /
    • 1999
  • The flow characteristics of supersonic ejectors is often subject to compressibility, unsteadiness and shock wave systems. The numerical works carried out thus far have been of one-dimensional analyses or some Computational Fluid Dynamics(CFD) which has been applied to only a very simplified configuration. For the design of effective ejector-pump systems the effects of secondary mass flow on the supersonic ejector flow should be fully understood. In the present work the supersonic ejector-pump flows with a secondary mass flow were simulated using CFD. A fully implicit finite volume scheme was applied to axisymmetric compressible Navier-Stokes equations. The standard two-equation turbulence model was employed to predict turbulent stresses. The results obtained showed that the flow characteristics of constant area mixing tube types were nearly independent of the secondary flow rate, but the flow fields of ejector system with the second-throat were strongly dependent on the secondary flow rate due to the effect of the back pressure near the primary nozzle exit.

  • PDF

Numerical Analysis for Internal Leakage Flow Characteristics of Damped Bypass Valve (Damped Bypass Valve의 내부 누설 유동 특성 전산 해석)

  • Lee, Seawook;Kim, Daehyun;Kim, Sangbeom;Park, Sangjoon;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • A numerical analysis for the internal flow was carried out in order to analyze the leakage flow characteristics inside the damped bypass valve. This research has found that the valve characteristics became stable at above a specific temperature. Very small amount of leakage flow was occurred. But there was no effect in temperature. The more temperature fell, the more maximum pressure rate was increased.

2차원 및 3차원 액체 램제트 엔진의 내부 유동 해석

  • 손창현;오대환;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.11-11
    • /
    • 1998
  • 최적의 액체 램제트 연소기 설계를 위하여 흡입공기와 분무, 혼합 그리고 이에 따른 연소의 일련의 과정이 일어나는 램제트 연소기의 유동해석을 2차원 및 3차원으로 수행하였다. 격자구성은 연소기에 공기를 공급하고 연료를 분무하는 공기 유입관 영역과 연소실 및 노즐 영역, 그리고 출구 대기 영역으로 나누어 독자적으로 격자를 생성시켰다. 연소실 내의 유동 특성에 있어서 2차원과 3차원의 유동해석 결과는 선회영역 유동특성이 크게 차이가 남을 알 수 있었다. 따라서 실제 액체 램제트 연소기의 설계를 위해서는 3차원 유동해석과 실험이 반드시 필요하다.

  • PDF

Frequency Response of Turbulent Flow to Momentum Forcing in a Channel with Wall Blowing (질량분사가 있는 채널 내부 난류 유동의 외부교란에 대한 주파수 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.64-72
    • /
    • 2010
  • Due to the interaction between main oxidizer flow and the wall injected flow resulting from the regression process, a specific time characteristics identified in the frequency spectrum of streamwise velocity is generated in the hybrid rocket motor. In order to understand the response of the turbulent flow to two different types of external momentum forcing, LES analysis was conducted without considering the combustion. It turns out that both concentrated and distributed forcings do not lead to the disastrous resonance phenomenon. Energy contents are enhanced due to the added momentum but the peak frequency was not modified in the turbulent flow near the end of the rocket motor. Natural frequency of the flow system should be taken into account to further pursue the instability issue by using external forcing.

Numerical Study for the Influence of Environment Temperature on Offshore Arctic Pipeline and Impingement Erosion Analysis by using Thermal Flow Simulation (극지 해양 파이프라인 내부 유체의 온도별 영향 및 내부 충돌침식 분석)

  • Jo, Chul Hee;Lee, Jun-Ho;Jang, Choon-Man;Heang, Su-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2015
  • This paper describes thermal flow characteristic in various pipelines: straight pipeline and curved pipeline. In the Arctic and ocean area, pipelines are exposed to a extremely low temperature ($0{\sim}-40^{\circ}C$). In this situation, three-dimensional flow analysis should be analyzed to investigate thermal effects such as pressure drop, temperature change, velocity deficit and distribution change of liquid droplet of internal fluid. Also, due to freezing of water droplet, impingement erosion is expected in the curved pipeline. The stability of the pipelines can be influenced by impingement erosion. In this paper, multi-phase and multi-species analysis was introduced to analyze the flow characteristics and impingement erosion of Arctic and ocean pipelines.

Vibration Analysis of the Pipeline with Internal Unsteady Fluid Flow by Using Spectral Element Method (스펙트럴요소법을 이용한 내부 비정상류를 갖는 파이프에 대한 진동해석)

  • Seo, Bo-Sung;Cho, Joo-Yong;Lee, U-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.387-393
    • /
    • 2006
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid flow. The spectral element matrix is formulated by using the exact frequency-domain solutions of the pipe-dynamics equations. The spectral element dynamic analysis is then conducted to evaluate the accuracy of the present spectral element model and to investigate the vibration characteristics and internal fluid characteristics of an example pipeline system.