• Title/Summary/Keyword: 내구성 예측

Search Result 230, Processing Time 0.054 seconds

A Study on the Character of Concrete compressive strength according to Bottom-Ash and Internal gap for Crack aspect predictions (Bottom-Ash를 활용한 콘크리트 압축강도와 내부 공극 특성 분석 및 균열양상 예측)

  • Jung, Woo-Young;Sim, Young-Hwan;Lee, Sang-Moon;Choi, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.713-716
    • /
    • 2008
  • In about the concrete application which recycles Ash the research came to be advanced as research in compliance with researchers relation actively in about cement substitutional concrete mixing ratio and burglar quality of existing. The research which it sees as fundamental research the research which it follows in cement substitutional concrete mixing ratio of existing and it researched different Bottom-Ash recycling qualities in about cup aggregate partial substitution Bottom-Ash application.

  • PDF

Probability-Based Durability Analysis of Concrete Structures under Chloride Attack Environments (염해를 받는 콘크리트 구조물의 확률론적 내구성 해석)

  • Kim, Jee-Sang;Jung, Sang-Hwa;Kim, Joo-Hyung;Lee, Kwang-Myong;Bae, Su-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.239-248
    • /
    • 2006
  • Recently, a variety of researches has been carried out to obtain a more controlled durability and long-term performance of concrete structures under chloride attack environments. In particular, new procedures for probability-based durability analysis/design have been noticed to be very valuable for the enhancement of service life of concrete structures. Although there is still a lack of relevant data, this approach has been successfully applied to some new concrete structures. In this paper, the diffusion equation based on Fick's second law has been solved with a time dependent diffusion coefficient and the probabilistic analysis of the durability performance has been carried out by using a Monte Carlo Simulation. From the results, the influence of each parameter on the durability of concrete structures was investigated and the new procedure for durability analysis was demonstrated in terms of chloride penetration data from various concrete structures. The new procedure might be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures under chloride attack environments.

Image based Concrete Compressive Strength Prediction Model using Deep Convolution Neural Network (심층 컨볼루션 신경망을 활용한 영상 기반 콘크리트 압축강도 예측 모델)

  • Jang, Youjin;Ahn, Yong Han;Yoo, Jane;Kim, Ha Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.43-51
    • /
    • 2018
  • As the inventory of aged apartments is expected to increase explosively, the importance of maintenance to improve the durability of concrete facilities is increasing. Concrete compressive strength is a representative index of durability of concrete facilities, and is an important item in the precision safety diagnosis for facility maintenance. However, existing methods for measuring the concrete compressive strength and determining the maintenance of concrete facilities have limitations such as facility safety problem, high cost problem, and low reliability problem. In this study, we proposed a model that can predict the concrete compressive strength through images by using deep convolution neural network technique. Learning, validation and testing were conducted by applying the concrete compressive strength dataset constructed through the concrete specimen which is produced in the laboratory environment. As a result, it was found that the concrete compressive strength could be learned by using the images, and the validity of the proposed model was confirmed.

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques (최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정)

  • Baek, Seok-Heum;Choi, Hyun-Jin;Kim, Kwang-Hong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3125-3134
    • /
    • 2010
  • Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.

Trends of automobiles in the 1980's (1980년대의 자동차 동향)

  • 송철조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 1981
  • 세계는 자원쟁탈전장으로 변모하는 느낌을 주고 있는 가운데 세계경제가 석유에 얼마나 크게 좌우되고 있는가는 두 차례에 걸친 석유 파동에 의하여 여실히 증명된 바 있다. 더욱이 석유가 격의 불안정한 상황하에서 자동차에 있어서 필수적인 석유에 대한 소비절약은 자동차산업에 절 대적인 과제가 될 것이며, 이밖에 안전, 고해, 소음 등에 대한 각국의 규제가 1980년대에는 더욱 가중될 것으로 보인다. 또한 고객은 정부의 볍규제와는 달리 보다 개선된 쾌적성, 자동차 및 부품에 대한 신뢰성, 내구성 및 정비성 등을 자동차업계에 강요하게 될 것이다. 따라서 자동차설 계자나 제조기술자는 이 양대요구사항들을 만족시키기 위하여 어떤 방안을 강구할 것인지 각종 문헌을 토대로 예측하여 보기로 한다.

  • PDF

Probabilistic Service Life Evaluation for OPC Concrete under Carbonation Considering Cold Joint and Induced Stress Level (콜드조인트 및 재하 응력을 고려한 탄산화에 노출된 OPC 콘크리트의 확률론적 내구수명평가)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.45-52
    • /
    • 2019
  • Steel corrosion due to carbonation in RC (Reinforced Concrete) structures easily occurs in urban cities with high CO2 concentration. RC structures are always subjected to external loading with various boundary conditions. The induced stress level causes changes in diffusion of harmful ion like CO2. In this work, a quantification of carbonation progress with stress level is carried out and carbonation prediction is derived through the relations. Determining the design parameters like cover depth, CO2 diffusion coefficient, carbonatable materials, and exterior CO2 concentration as random variables, service lifes under carbonation with design parameter's variation are obtained through MCS(Monte Carlo Simulation). Additionally the service life with different stress level is derived and the results are compared with those from deterministic method. Cover depth and cement hydrates are evaluated to be very effective to resist carbonation, and the proposed method which can consider the effect of stress on service life can be applied to maintenance priority determination.

Convergence Technique Study through CAE due to the Shape of Lift for Car (차량용 리프트의 형상에 따른 CAE를 통한 융합 기술 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.49-54
    • /
    • 2015
  • Nowadays, one lift among the fundamental equipments at auto-repair must withstand the heavy weight of car. Therefore, the strong lift which is easy to make repairs on cars is the indispensible equipment. In this study, three kinds of lifts are modelled and the simulation analysis is carried out with the finite element analysis program of ANSYS. The durability of lifts due to each configuration can be estimated on the background of this study result and the data to be contributed to the development of new lift for car with safety and durability can be accumulated ultimately. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Service Life Prediction of R.C. Structures Considering Chloride Binding (염화물 고정화를 고려한 철근 콘크리트 구조물의 내구수명 예측)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • Chloride-induced corrosion of steel bars in concrete exposed to marine environments has become one of the major causes of deterioration in many important facilities made of reinforced concrete. A study on chloride penetration in concrete has developed through long period exposure test along seawater, assesment of chloride ion diffusion by electrochemical techniques and so on. However, reasonable and exclusive chloride penetration model considering concrete material properties with mixture, degree of hydration, binding capacity has not been established. Therefore, in this paper, chloride penetration analysis of non-steady state is accomplished with material properties of concrete. Comparing with the results of analysis and chloride ponding test, we could accept the effect of binding capacity on chloride penetration in concrete and these results could be applied to a service life prediction of R.C. structures submerged in seawater. Therefore, there are 20~40% differences of service life to SHRP prediction.

Remaining Service Life Prediction of Concrete Structures under Chloride-induced Loads (염해환경하의 콘크리트 구조물의 잔존수명 예측)

  • Song, Ha-Won;Luc, Dao Ngoc The
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1037-1040
    • /
    • 2008
  • In order to predict the remaining life of marine concrete structures under climatic loads, it is necessary to develop an analytical approach to predict the time and space dependent deterioration of concrete structures due to mainly chloride attack up to corrosion initiation and additional deterioration like cracking of cover concrete. This study aims to introduce FEM model for life-time simulation of concrete structures subjected to chloride attack. In order to consider uncertainties in materials as well as environmental parameters for the prediction, Monte Carlo Simulation is integrated in that FEM modeling for reliability-based remaining service life prediction. The paper is organized as follows: firstly general scheme for reliability-based remaining service life of concrete structures is introduced, then the FEM models for chloride penetration, corrosion product expansion and cover cracking are briefly explained, finally an example is demonstrated and the effects of localization of chloride concentration and corrosion product expansion on service life using above model are discussed.

  • PDF

Severity Test of Road Surface Profile by Using the Fatigue Life Prediction Method (피로수명 예측법을 이용한 각 도로가 차량의 내구성에 미치는 가혹도 평가)

  • Jung, W.W.;Kang, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.154-161
    • /
    • 1995
  • There are several kinds of driving conditions according to the characteristic of each vehicle diver. Automaker produces vehicle strong enough to satisfy this several driving conditions at the point of vehicle durability. In order to develop the car in a short period, Automaker engineer tests vehicle at serveral accelerated durability test roads. Before testing the vehicle durability, test engineer must know how much this test road severe than general field road which is composed of high way, city road, paved road and unpaved road. This paper suggests two types of road severity test method that is using relative fatigue life prediction method and using absolute fatigue life prediction method, and also present the merits and demerits of two test methods.

  • PDF