• Title/Summary/Keyword: 낮은 원호아치

Search Result 4, Processing Time 0.022 seconds

A Geometrically Nonlinear Dynamic Analysis of Shallow Circular Arches Using Total Lagrangian Formulation (Total Lagrangian 문제형성에 의한 낮은 원호아치의 동적 비선형거동 해석)

  • Kim, Yun Tae;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.39-48
    • /
    • 1990
  • For shallow circular arches with large dynamic loading, use of linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of the shallow circular arches in which geometric nonlinearity is dominant. A program is developed for analysis of the nonlinear dynamic behavior and for evaluation of the critical buckling loads of the shallow circular arches. Geometric nonlinearity is modeled using Lagrangian description of the motion and finite element analysis procedure is used to solve the dynamic equations of motion in which Newmark method is adopted as a time marching scheme. A shallow circular arch subject to radial step load is analyzed and the results are compared with those from other researches to verify the developed program. The critical buckling loads of shallow arches are evaluated using the non-dimensional parameter. Also, the results are compared with those from linear analysis.

  • PDF

A Study on Buckling Behavior of Shallow Circular Arches (낮은 원호아치의 좌굴거동에 대한 연구)

  • 김연태;허택녕;오순택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.87-94
    • /
    • 1998
  • Behavioral characteristics of shallow circular arches with dynamic loading and different end conditions are analysed. Geometric nonlinearity is modelled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion, and the Newmark method is adopted in the approximation of time integration. The behavior of arches is analysed using the buckling criterion and non-dimensional time, load and shape parameters which Humphreys suggested. But a new deflection-ratio formula including the effect of horizontal displacement plus vertical displacement is presented to apply for the non-symmetric buckling problems. Through the model analysis, it's confirmed that fix-ended arches have higher buckling stability than hinge-ended arches, and arches with the same shape parameter have the same deflection ratio at the same time parameter when loaded with the same parametric load.

  • PDF

Development of Nonlinear Dynamic Program for Buckling Analysis of Plane Circular Arches (평면 원호아치의 좌굴해석을 위한 동적 비선형해석 프로그램의 개발)

  • 허택녕;오순택
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.69-81
    • /
    • 1994
  • This paper summarizes a dynamic analysis of the shallow circular arches under dynamic loading, considering the geometric nonlinearity. The major emphasis is placed on the development of computer program, which is utilized for the analysis of the nonlinear dynamic behavior and for the evaluation of the critical buckling loads of the shallow circular arches. Geometric nonlinearity is modeled using Lagrangian description of the motion and a finite element analysis procedure is used to solve the dynamic equation of motion. A circular arch subject to normal step load is analyzed and the results are compared with those from other researches to verify the developed program. The critical buckling loads of arches are estimated using the non-dimensional time, load and shape parameters and the results are also compared with those from the linear analysis. It is found that geometric nonlinearity plays and important role in the analysis of shallow arches and the probability of buckling failure is getting higher as arches become shallower.

  • PDF

Determination of the Critical Buckling Loads of Shallow Arches Using Nonlinear Analysis of Motion (비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정)

  • Kim, Yun Tae;Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.43-54
    • /
    • 1992
  • For shallow arches with large dynamic loading, linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of shallow arches in which geometric nonlinearity must be considered. A program is developed for the analysis of the nonlinear dynamic behavior and for evaluation of critical buckling loads of shallow arches. Geometric nonlinearity is modeled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion and Newmark method is adopted in the approximation of time integration. A shallow arch subject to radial step loads is analyzed. The results are compared with those from other researches to verify the developed program. The behavior of arches is analyzed using the non-dimensional time, load, and shape parameters. It is shown that geometric nonlinearity should be considered in the analysis of shallow arches and probability of buckling failure is getting higher as arches are getting shallower. It is confirmed that arches with the same shape parameter have the same deflection ratio at the same time parameter when arches are loaded with the same parametric load. In addition, it is proved that buckling of arches with the same shape parameter occurs at the same load parameter. Circular arches, which are under a single or uniform normal load, are analyzed for comparison. A parabolic arch with radial step load is also analyzed. It is verified that the developed program is applicable for those problems.

  • PDF