• Title/Summary/Keyword: 낮은 아치

Search Result 27, Processing Time 0.025 seconds

Studies on Growth Responses of Tomato and Environmental Characteristics of Various Rain Shelter Types (간이시설 형태별 환경특성과 토마토 생장반응 연구)

  • 김현환;조삼증;이시영;권영삼;신만균;남윤일;최규홍
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.89-98
    • /
    • 1993
  • The purpose of this study was to investigate crop growth responses under various rain shelters which were devised to improve the indoor environment in summer season. For developing the proper type of rain shelter, the improved rain shelters with the roof of saw - tooth type(saw-tooth type) and 3 span-arch type(improved arch type) were compared with the conventional one with the roof of single arch type(conventional arch type) and no rain shelter (open field ). The results were summarized as follows ; 1. The air temperature in the improved arch type was 4$^{\circ}C$ and 1$^{\circ}C$ lower than those in the conventional arch type and the saw - tooth type, respectively. 2. The air temperature drop by the evaporative cooling + improved drainage was 1.3$^{\circ}C$ which was 0.9$^{\circ}C$lower than that by the improved drainage only. 3. The effect of labour saving in the saw-tooth type was superior to any other type because its frames were used as props and the labour for ventilation was not needed. 4. The highest marketable yield of tomato was 4,897kg/10a in the improved arch type and the total leaf areas which related to photosynthesis was the largest in the saw - tooth type. 5. The improved arch type was proved to be proper to raise yield potential. The effect of the underground environment treatment on the quality and quantity of vegetable showed to be outstanding in the saw- tooth type with the evaporative cooling + improved drainage, and in the improved and conventional arch type with the trickle improved drainage. 6. In conclusion, the saw - tooth type and the improved arch type were proved to be labour saving rain shelters and the indoor environments in both types were better than that in the conventional arch type.

  • PDF

A SURVEY ON THE USING STATUS AND PERCEPTION OF PIT AND FISSURE SEALANT (치면열구전색제 사용실태와 인식에 관한 조사)

  • Choi, Jung-In;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun;Jang, Ki-Taek
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.53-61
    • /
    • 2009
  • The property of pit and fissure sealant has been improved and many studies on the bond strength, penetration, microleakage have been published. But there are few studies on the using status and perception of pit and fissure sealant within the country. Therefore, this study made a survey on it. Pedodontists and non-pedodontists were surveyed by interview. The Results were as follows; 1. On caries prevention effect, 96.7% of the pedodontists replied that sealants were effective on both permanent teeth and primary teeth. On the other hand, 13.5% of the non-pedodontists replied that sealants weren't effective on both. 2. All of the pedodontists and 27% of the non-pedodontists used rubber dams. 83.3% of the pedodontists and 40.5% of the non-pedodontists used bonding agents. 3. Non-pedodontists used enameloplasty more frequently than Pedodontists but the pattern was not significantly different. 4. The causes of sealant failures included salivary contamination, caries under sealant, low strength, low flowability, overfilling. 5. In the pedodontists, 90% replied that PRR application was desirable and PRR applications were more frequent than sealant application.

  • PDF

Roof Ventilation Structures and Ridge Vent Effect for Single Span Greenhouses of Arch Shape (아치형 단동온실의 지붕환기구조 및 천창효과)

  • Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouses of arch shape. Investigation on the roof ventilation structures for those greenhouses was conducted. In small greenhouses with spans of 5 to 8 m, circular or chimney type ridge vents made of plastic were employed. In large greenhouses with spans of 12 to 18 m, even span roll-up ridge vents made of steel pipe were employed. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing ridge vents and having controlled side vents only. Roof ventilation contributed greatly to restraint of temperature rise and maintenance of uniform temperature distribution in greenhouses. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the ridge and side vent. There were no temperature differences according to opening and closing sequence of ventilation window. But for greenhouse temperature control by ventilation, it is desirable to open side vents after ridge vents and to close ridge vents after side vents.

  • PDF

Strength properties of arch type laminated lumber produced from domestic small lumbers (소경재를 이용한 집성 arch재의 강도 특성)

  • 박준철;홍순일
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.73-80
    • /
    • 2001
  • This study was carried out to investigate the strength and technical feasibility of arch type laminated lumber from the domestic small lumbers(Pinus densiflora S. et Z. and Larix kampferi Catt.). Arch type lumbers manufactured with different compositions of laminae. It was designed to improve the strength and stiffness. Strength S. rt Z. U;timate load Carr. laminated lumbers were higher than that of the Pinus densiflora S. et Z. Ultimate load of 7-ply laminated lumbers were 2 times higher than the 5-ply laminated lumbers. The strength of finger jointed lumbers were found to be about 15.8% less than that of the no joint lumber. One solution for this problem is to use veneer as face lamina. The veneer laminated lumbers was considerably greater than that of the non-veneer laminated lumbers. It was suggested that this small lumber may be a candidate for high valued product member to provide the proper combination of laminae.

  • PDF

Transformation of Load Transfer Soil Arch in Geosynthetics-Reinforced Piled Embankment: A Numerical Approach (성토지지말뚝공법의 아치형 응력전달구조 변화에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.5-16
    • /
    • 2016
  • In the geosynthetics-reinforced piled embankment the effects of soft soil stiffness, friction angle of the fill material, tensile stiffness of geosynthetics, and height of the embankment on the load transfer soil arch measured by the critical height were numerically investigated. Results from parametric studies show that the magnitude of the soft soil stiffness is the most influencing factor on the critical height. The contour charts of the critical height with respect to the combination of the soft soil stiffness and other parameters were presented. The charts show that the critical height sensitively varies with the combination of the soft soil stiffness and the height of embankment. Under the sufficiently low stiffness of soft soil, the critical height sensitively varies with the friction angle of the fill material. Once the geosynthetic layer is placed, however, the magnitude of the tensile stiffness of the geosynthetic layer hardly influences the critical height of the soil arch.

An Analysis of Dynamic Critical Loads for Low Parabolic Arches with Different End Conditions (지지조건을 고려한 낮은 포물선 아치의 동적 임계하중의 해석)

  • 박승범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.87-92
    • /
    • 1986
  • The differential equation, which can determine the dynamic critical loads for low parabcoic arches, is derived in this study. The dynamic critical loads of the parabolic arches subjected to a concentrated step load are nummerically analyzed for the changes of load positions. In cases of arches with different end conditions (both hinged, fixed hinged, both fixed), the effect of end conditions and that of the rises are investigated in detail. The summary of the results are the following: 1)The snapthrough does not occur when the rise of arch is very low, and the bifurcation appears clearly as the rise of arch increases. 2)The regions in which the dynamic critical loads are not defined for the both ends fixed are broader than that for the both ends hinged. 3)For all case, the load positions of minimum dynamic critical loads exsit at the near position from the end hinged. Thus, the results obtained in present study show that the magnitude of dynamic critical loads, the load positions of minimum dynamic critical loads and the regions in which the dynamic critical loads are not defined depend on end conditions of arches.

  • PDF

Lowest Symmetrical and Antisymmetrical Natural Frequency Equations of Shallow Arches on Elastic Foundations (탄성지반 위에 놓인 낮은 아치의 최저차 대칭 및 역대칭 고유진동수 방정식(구조 및 재료 \circled1))

  • 이병구;박광규;오상진;서종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.213-218
    • /
    • 2000
  • This paper deals with the free vibrations of shallow arches resting on elastic foundations. Foundations are assumed to follow the hypothesis proposed by Pasternak. The governing differential equation is derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. Sinusoidal arches with hinged-hinged and clamped-clamped end constraints are considered in analysis. The frequency equations (lowest symmetical and antisymmetrical natural frequency equations) are obtained by Galerkin's method. The effects of arch rise, Winkler foundation parameter and shear foundation parameter on the lowest two natural frequencies are investigated.

  • PDF

Analysis of cause and deterioration about using 3-Arch tunnel (공용중인 3-Arch터널의 열화조사 및 원인분석)

  • Lee, Yu-Seok;Park, Sung-Woo;Whang, In-Baek;Shin, Yong-Suk;Kim, Sun-Gon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • This paper studied the cause of the deterioration of the four 3-Arch tunnels built in mid-1990. The common deteriorations of the four 3-Arch tunnels were longitudinal cracks, leakage and efflorescence at the same parts of lining concrete. Three fourths of 3-Arch tunnels, there was high percentage longitudinal cracks and a quarter was low frequency about longitudinal cracks. So the material reviewed to find out the differences between two groups in construction process and analysis was conducted such as non-destructive testing, precise visual survey and safety evaluation of one tunnel which had bad ground condition As the result, the tunnels were safety condition and the primary deterioration occurred during the construction process, namely, problems arrangement of rebar and the effects of the blast at middle tunnel.

A Study on the Stability Boundaries for Single Layer Latticed Domes and Arch under Combined Loads (조합하중를 받는 단층 래티스 돔과 아치의 안정경계에 관한 연구)

  • Han, Sang-Eul;Lee, Sang-Ju;Lee, Kap-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.103-109
    • /
    • 2004
  • The lowest load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to be analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter. In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arch were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF

Evaluation of Minimum Depth Criterion and Reinforcement Effect of the Soil Cover in a Long-span Soil-steel Bridge (장지간 지중강판구조물의 최소토피고 평가 및 토피지반 보강에 대한 수치해석)

  • 이종구;조성민;정현식;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.67-78
    • /
    • 2004
  • Soil-steel bridges are made of flexible corrugated steel plates buried in the well-compacted granular soil. One kind of possible collapses of these structures could be initiated by shear or tension failure in the soil cover subjected to vehicle loads. Current design codes provide the requirements for the minimum depth of the soil cover to avoid problems associated with soil cover failures. However, these requirements were developed for short span (less than 7.7 m) structures which are made of unstiffened plates of standard corrugation (150$\times$50 m). Numerical analyses were carried out to investigate the behavior of long span soil steel bridges according to thickness of the soil cover. The span of structures were up to 20 m and deep corrugated plates (381$\times$140 m) were used. The analysis showed that the minimum cover depth of 1.5 m could be sufficient to prevent the soil cover failure in the structures with a span exceeding 10 m. Additional analyses were performed to verify the reinforcement effect of the concrete relieving slab which can be a special feature to reduce the live-load effects. Analyses revealed that the bending moment of the conduit wall with a relieving slab was less than 20% of that without a relieving slab in a case of shallow soil cover conditions.