• Title/Summary/Keyword: 납이온제거

Search Result 7, Processing Time 0.031 seconds

A Study on Heavy Metal Removal Using Alginic Acid (알긴산을 이용한 중금속 제거에 관한 연구)

  • Jeon, Choong;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.107-114
    • /
    • 2007
  • A study on the removal of heavy metals using alginic acid, a kind of polysaccharides, was performed. Alginic acid adsorbed 480 mg Pb/g dry mass at pH 4, which was about twice as high as uptake capacity of other biosorbents. Isothermal adsorption curve for lead ions was described by the Langmuir model equation and the experimental data well fitted to model equation. The adsorption of lead ions was an endothermic process since binding strength increased with temperature. The effect of alkali metal ions ($Ca^{2+}$ and $Mg^{2+}$) on lead sorption capacity was negligible and most adsorption process was completed in 30min. The uptake capacity of other metals such as, copper, mercury, strontium, and cesium ions using alginic acid was also investigated.

  • PDF

게 껍질을 이용한 수중의 납 이온 제거공정의 메커니즘 규명에 관한 연구

  • 신주남
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.05a
    • /
    • pp.211-216
    • /
    • 2001
  • 수용액상에서 게 껍질에 의한 납 이온 제거시 납 이온 메카니즘을 규명하기 위하여 납이온 제거에 미치는 pH의 영향에 대해 조사하였다. 게 껍질에 의한 납 이온의 제거는 게껍질 내에 함유되어 있는 CaC $O_{3(S)}$의 용해에 따른 미세침전에 의한 제거가 대부분인 것으로 나타났다. pH가 증가하면 납 이온 제거량도 증가하였고 이온교환에 의해 발생되는 칼슘 이온의 유출은 납 이온 제거를 더욱 증가시키고 게 껍질 내의 $CO_{3}^{2-}$는 납 이온의 침투로 게 껍질 내부에 $PbCO_{3(S)}$ 형태의 복합체를 형성하는 것으로 판단되었다. 납 이온의 제거는 대부분 게 껍질 내 $PbCO_{3(S)}$의 용해로 인해 발생되는 $Pb_{3}(CO_{3}){2}(OH)_{2(S)}$$PbCO_{3(S)}$의 침전으로 이루어졌다. 수용액 중의 납 이온은 게 껍질 내 CaC $O_{3(S)}$의 용해를 가속화시키며 게 껍질 내부에서도 납 이온의 침전물이 발생하는 것으로 관찰되었다.

  • PDF

Removal of Pb2+ Ions from Water by Surfactant-templated Mesoporous Silicates (계면활성제가 담지된 메조포러스 실리케이트에 의한 수중 납이온 제거)

  • Choi, Hyun Suk;Lee, Dong Gue;Cho, Guk Jin;Lee, Chae Young;Chung, Jin Suk;Yoo, Ik-keun;Shin, Eun Woo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.172-178
    • /
    • 2006
  • Mesoporous silicate materials have been used as adsorbents for the removal of heavy metals from water by introducing functional groups such as thiol and amine. In this research, it was investigated whether surfactants used as templating agents in synthetic processes can act as adsorption sites for heavy metals. Three mesoporous silicates-SBA-15, MCM-41, and HMS were synthesized using, respectively, block copolymer, hexadecyltrimethylammoniumbromide (HDTMA), and dodecyamine as surfactants. X-ray diffraction and $N_2$ gas adsorption analysis confirmed that the mesoporous silicates were well prepared and FT-IR spectra resulted in the existence of the surfactants in as-synthesized mesoporous silicates and the removal of surfactants after calcination. The interactions between $Pb^{2+}$ ions and the mesoporous silicate materials with/without surfactants were observed. In adsorption kinetic experiments, it revealed that the calcined mesoporous silicates and the surfactant-loaded SBA-15 almost had no adsorption capacity for $Pb^{2+}$ ions. In contrast, the surfactant-loaded MCM-41 and HMS showed, respectively, the adsorption capacities of 26.60 and 115.16 mg/g which were acquired through the fits of adsorption kinetic data to the pseudo second order kinetic model. The adsorption capacities were comparable to those of other mesoporous adsorbents for heavy metals.

Removal of Lead from Aqueous Solution Using Emulsion Liquid Membranes (에멀젼액막을 이용한 수용액에서의 납이온 제거에 관한 연구)

  • 김병식;죤윈섹
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.84-85
    • /
    • 1994
  • 본 연구는 수용상에 포함된 중금속이온중 에멀젼 액막법(Emulsion Liquid Membranes, ELM)을 이용하여 납이온을 제거시키기 위한 연구이다. 지금까지 수용액상의 중금속 이온의 제거는 전통적으로 이온 침전법을 사용하여 왔다. 그러나 이 방법은 스럿지 처리문제가 남아 있고 식수로 이용되는 수처리에는 식수기준 만족도 때문데 적합하지 않았다. ELM법에 의한 금속이온 제거처리는 전기도금에 의하여 중금속이온을 회수할 수 있고 고도의 수처리를 가능케하여 최근 많은 관심을 갖고 있다. 본 연구에서는 납 이온 추출제로서 D2EPHA와 Alamine336의 이온교환제를 사용하여, 이 씨스테므이 추출 평형자료를 구하고 pH, 추출제의 농도, 교반속도, 에멀젼비율등에 의한 추출효과등을 검토하였다. 또한 2단계 추출 방법을 사용하여 금속이온추출에서 가장 큰 문제점인 유기상 용액의 leakage를 해결하고자 하였다.

  • PDF

A Study on the Availability of Activated Sludge for the $Pb^{2+}$ Removal in Aqueous Solution (수용액중 납이온 제거를 위한 활성슬러지의 이용가능성에 관한 연구)

  • 김동석;서정호
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.697-705
    • /
    • 1998
  • $Pb^{2+}$ removal capacity and initial $Pb^{2+}$ removal rate were compared between non-biomaterials (granular activated carbon, powdered activated carbon, ion exchange resin, zeolite) and biomaterials (activated sludge, Aureobasidium pullulans, Saccharomyces cerevisiae). The $Pb^{2+}$ removal capacity of biomaterials were greater than that of non-biomaterials, generally. The $Pb^{2+}$ removal capacities of non-biomaterials and biomaterials were shown on the order of ion exchange resin > zeolite > granular activated carbon > powdered activated carbon and A. pullulans > S. cerevisiae > activated sludge, respectively. In the initial $Pb^{2+}$ removal rate, the non-biomaterials showed powdered activated carbon > granular activated carbon > zeolite > ion exchange resin and the biomaterials showed A. pullulans > activated sludge > S. cerevisiae. Comparing the $Pb^{2+}$ removal capacity and initial $Pb^{2+}$ removal rate of activated sludge with those of other non-biomaterials and biomaterials, activated sludge may have an availability on the removal of heavy metal ions by the economical and pratical aspects.

  • PDF

Removal of Lead Ions from Aqueous Solution Using Juniperus chinenensis Waste (폐향나무를 이용한 수용액에서 납 이온 제거)

  • Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.428-432
    • /
    • 2013
  • From the forest areas in Chungbuk, large amounts of wood wastes by pruning are generated, however most of them considered as by-products are not treated properly with no disposal options. In this work, among diverse wood wastes such as Quercus variabillis, Juniperus chinensis, Larix kaemoferi, and Pinus densiflora, Juniperus chinensis was found to be more effective biosorbent for the removal of lead ions than other wood wastes. Also, the enhancement of lead removal efficiency from the aqueous phase was investigated using Juniperus chinensis waste. It was observed that the optimal initial pH to increase the removal efficiency of 20 mg/L lead ions was 4.0 and the optimal dosage concentration with regard to the biosorbent for the enhanced removal of 50 mg/L lead ions was 0.6 g/100 mL. In addition, chemical treatment of Juniperus chinensis waste with sulfuric acid was required to improve the adsorption capacity for high lead concentrations (over 100 mg/L). When Juniperus chinensis waste was chemically treated with 6 M sulfuric acid, the adsorption quantities of lead ions were 180, 340, and 425 mg/g with regard to 200, 400, and 500 mg/L lead ions concentrations, respectively. These results indicate that the practical biosorbent technology developed in this study is a highly efficient method to treat the lead ion from an aqueous solution.