• Title/Summary/Keyword: 납볼

Search Result 5, Processing Time 0.019 seconds

On the Development of an Inspection Algorithm for Micro Ball Grid Array Solder Balls ($\mu$BGA패키지 납볼 결함 검사 알고리듬 개발에 관한 연구)

  • 박종욱;양진세;최태영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • This paper proposes an inspection algorithm for micro ball grid array ($\mu$BGA) solder balls. This algorithm is motivated by the difficulty of finding defect balls by human visual inspection due to their small dimensions. Specifically, it is developed herein an automated vision-based inspection algorithm for $\mu$BGA's, which can inspect solder balls not only for so-called two dimensional errors, such as missings, positions and sizes, but also for height errors. The inspection algorithm uses two dimensional images of $\mu$BGA obtained through special blue illumination, and processes them with a rotation-invariant sub algorithm. It can also detect height errors when a two-camera system is available. Simulation results show that the proposed algorithm is more efficient in detecting ball defects compared with the conventional algorithms.

  • PDF

Development of ${\mu}BGA$ Solder Ball Inspection Algorithm (${\mu}BGA$ 납볼 검사 알고리즘 개발)

  • 박종욱;양진세;최태영
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.139-142
    • /
    • 2000
  • $\mu$BGA(Ball Grid Array) is growing in response to a great demand for smaller and lighter packages for the use in laptop, mobile phones and other evolving products. However it is not easy to find its defect by human visual due to in very small dimension. From this point of view, we are interested its development of a vision based automated inspection algorithm. For this, first a 2D view of $\mu$BGA is described under a special blue illumination. Second, a notation-invariant 2D inspection algorithm is developed. Finally a 3D inspection algorithm is proposed for the case of stereo vision system. As a simulation result, it is shown that 3D defect not easy to find by 2D algorithm can be detected by the proposed inspection algorithm.

  • PDF

Image Enhancement for 3D Shape Measurement Using Large Aperture Projection System (오목거울을 이용한 3차원 형상측정을 위한 모아레 영상 획득 방법)

  • Yoon, Doo-Hyun;Kim, Hak-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.327-333
    • /
    • 2008
  • In general, a lens with large NA makes image quality better. There are many kinds of cheap concave mirrors with large aperture and NA. This paper presents a method that uses a large aperture projection imaging system to enhance the image used for 3D shape measurement. This method makes it possible to enhance reflection uniformity on the object surface and increases SNR (Signal to Noise Ratio). Using a large aperture lens, it is possible to obtain a brighter image, reducing the shading nature in the image boundary, and enhancing the reflection uniformity even on woven surfaces. Because of the exorbitant cost of a large aperture projection lens larger than 150 mm in diameter, a refractive lens was exchanged with a concave mirror resulting in the same optical effect. In experiment, changing NA $0.15{\sim}0.8$, image contrast was enhanced from 46 to 1.33. Incidentally, the effect of the concave mirror was tested successfully through the experiment.

A Study on Projection Angles for an Optimal Image of PNS Water's View on Children (유.소아 부비강 Water's 영상의 이상적 구현을 위한 촬영기준각도 변화에 관한 연구)

  • Son, Sang-Hyuk;Song, Young-Geun;Kim, Sung-Kyu;Hong, Sang-Woo;Kim, Je-Bong
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.105-111
    • /
    • 2007
  • This study is to calculate the proper angle for the optimal image of PNS Water's view on children, comparing and analyzing the PNS Water's projection angles between children and adults at every age. This study randomly selected 50 patients who visited the Medical Center from January to May in 2005, and examined the incidence path of central ray, taking a PNS Water's and skull trans-Lat. view in Water's filming position while attaching a lead ball mark on the Orbit, EAM, and acanthion of the patients's skull. And then, we calculated the incidence angles(Angle A) of the line connected from OML and the petrous ridge to the inferior margin of maxilla on general(random) patients's skull image, following the incidence path of central ray. Finally, we analyzed two pieces of the graphs at ages, developing out the patients' ideal images at PNS Water's filming position taken by a digital camera, and calculating the angle(Angle B) between OML and IP(Image Plate). The angle between OML and IP is about $43^{\circ} in 4-years-old children, which is higher than $37^{\circ}, as age increases the angle decreases, it goes to $37^{\circ} around 30 years of age. That is similar result to maxillary growth period. We can get better quality of Water's image for children when taking the PNS Water's view if we change the projection angles, considering maxillary growth for patients in every age stage.

  • PDF