• Title/Summary/Keyword: 남중고도

Search Result 14, Processing Time 0.016 seconds

A Study on the inclined balcony and double deck structure of Korean traditional housing (한옥의 경사처마와 이중바닥구조에 관한 연구)

  • Roh, Young-Sook;Kim, Jeong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8408-8415
    • /
    • 2015
  • The purpose of this study is to propose and analyse new technology of structural elements design for Korean-style house(Hanok). Design of modern apartment building adopts many aesthetic elements from Hanok, however, these are only for the decorations of interior. In this study, projected Hanok eaves were studied in terms of the length of solar insolation. Inclined front slab system has been proposed utilizing sloping roof to an apartment building section. This system can provide the same sunshine radiation length and outside view to all levels of building to overcome the limitation of traditional hanok. It also can be applied to all residences the vertical garden concept of hanok. Inclined slab system showed 20% more efficient than flat slab system in terms of solar insolation length. This study also suggested a double deck slab system for not only reducing apartment floor impact noise but also connecting concept of traditional maru system in hanok. Double deck system reduces 66% of floor impact noise comparing with single deck slab of modern apartment buildings.

Wind load analysis of Structure for Folding Solar Power System (접이식 태양광 발전 구조물의 풍하중해석)

  • Son, Chang-Woo;Kim, Tae-Kyun;Seo, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.1-7
    • /
    • 2018
  • A folding solar power system is a stand-alone system and is a structure with solar panels attached. It consists of supporting parts and folding parts for ease of movement. While the efficiency of solar panels is also important to produce electricity by maximizing the power efficiency of solar panels, the most important thing is structure stability. The folding solar power structure intended to be developed in this study is a collapsible structure that is easy to move and install into systems that can produce electricity from grid to independent. Since these structures are installed outdoors, wind loads, snow cover, etc. In this paper, the wind loads most affected by the folding solar power generation structure were obtained using the MeshFree Finite Element Method. MeshFree is a program that makes it easier for users to interpret by simplifying the mesh tasks required by an existing analysis. The analysis showed that the greater the angle of inclination of the wind to the ground, the greater the wind load. In addition, reliability was ensured by wind load testing.

Algorithm of Generating Adaptive Background Modeling for crackdown on Illegal Parking (불법 주정차 무인 자동 단속을 위한 환경 변화에 강건한 적응적 배경영상 모델링 알고리즘)

  • Joo, Sung-Il;Jun, Young-Min;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • The Object tracking by real-time image analysis is one of the major concerns in computer vision and its application fields. The Object detection process of real-time images must be preceded before the object tracking process. To achieve the stable object detection performance in the exterior environment, adaptive background model generation methods are needed. The adaptive background model can accept the nature's phenomena changes and adapt the system to the changes such as light or shadow movements that are caused by changes of meridian altitudes of the sun. In this paper, we propose a robust background model generation method effective in an illegal parking auto-detection application area. We also provide a evaluation method that judges whether a moving vehicle stops or not. As the first step, an initial background model is generated. Then the differences between the initial model and the input image frame is used to trace the movement of object. The moving vehicle can be easily recognized from the object tracking process. After that, the model is updated by the background information except the moving object. These steps are repeated. The experiment results show that our background model is effective and adaptable in the variable exterior environment. The results also show our model can detect objects moving slowly. This paper includes the performance evaluation results of the proposed method on the real roads.

  • PDF

The Influence of Landscape Pavements on the WBGT of Outdoor Spaces without Ventilation or Shade at Summer Midday (조경포장이 옥외공간의 온열쾌적성지수(WBGT)에 미치는 영향 - 통풍과 차광이 배제된 하절기 주간의 조건에서 -)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • The purpose of the study was to evaluate the influence of landscaping pavements on WBGT(Wet-Bulb Globe Temperature) of outdoor spaces that lack ventilation and shade at summer midday. The relative humidity(RH), dry-bulb temperature(DT) and globe temperature(GT) were recorded every minute from June to October 2009 at a height of 1.2m above ten experimental beds with different pavements, by a measuring system consisting of an electric humidity sensor(GHM-15), resistance temperature detector(RTD, Pt-100), standard black globe(${\phi} 150mm$) and data acquisition systems(National Instrument's Labview and Compact FieldPoint). Additionally, the surface dry-bulb temperatures also were recorded and compared. The area of each experimental bed was 1.5m(W)${\times}$2.0m(L) and ten different kinds of pavement were used including grass, grass+cubic stone, grass+porous brick, brick, stone panels, cubic stone, interlocking blocks, clay brick, naked soil, gravel and concrete. To prevent interference from ventilation, a 1.5m height cubic steel frame was established around each bed and each vertical side of the frame was covered with transparent polyethylene film. Based on the records of the hottest period from noon to 3 PM on 26 days with a peak dry-bulb temperature over $30^{\circ}C$ at natural condition, the wet-bulb temperature(WT) and WBGT were calculated and compared. The major findings were as follows: 1. The average surface DT was $40.1^{\circ}C$, which is $9^{\circ}C$ higher than that of the natural condition. The surface DT of the pavements with grass were higher than those of concrete and interlocking block. The peak DT of the surface almost every pavement rose to above $50^{\circ}C$ during the hottest time. 2. The averages of DT, WT and GT were $40.1^{\circ}C$, $27.5^{\circ}C$ and $49.1^{\circ}C$, and the peak values rose to $48.1^{\circ}C$, $45.8^{\circ}C$ and $59.5^{\circ}C$, respectively. In spite of slight differences that resulted according to pavements, no coherent differentiating factor could be found. 3. The average WBGT of grass was the highest at $34.3^{\circ}C$ while the others were similar in the range of around $33{\pm}1^{\circ}C$. Meanwhile, the peak WBGT was highest with stone panel at $47.9^{\circ}C$. Though there were some differences according to pavements, and while grass seemed to be worst in terms of WBGT, it seems difficult to say ablolutely that grass was the worst because the measurement was conducted without ventilation and shade during summer daytime hours only, which had temperatures that rose to a dangerous degree(above $45^{\circ}C$ WBGT), withering the grass during the hottest period. The average WBGT resulted also showed that the thermal environment of the pavement without ventilation and shade were at an intolerable level for humans regardless of the pavement type. In summary, the results of this study show that ventilation and shade are more important factor than pavement type in terms of outdoor thermal comfort in summer daylight hours.