• Title/Summary/Keyword: 날개 형상

Search Result 317, Processing Time 0.024 seconds

Effect of Centerbody on the Vortex Flow of a LEX-Delta Wing Configuration (중앙동체가 LEX-삼각날개 형상의 와류에 미치는 영향)

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.9-17
    • /
    • 2005
  • An experimental study of the vortical flow over a yawed delta wing with leading edge extension(LEX) was conducted to investigate the effects of the existence of a centerbody configuration on the flow characteristics of the wing and LEX vortices using off-surface visualization and PIV measurements. The qualitative investigation using these two techniques indicated that the effect of the centerbody existence on the vortex formation was minimal at somewhat low range of angles of attack and sideslip angles. However, the quantitative analysis of the surface pressure measurements revealed the effect of centerbody existence to be prominently increased for the cases with higher angles of attack and sideslip angles. It was also found that the centerbody effect was not significant compared to the effect of sideslip for the present LEX-delta wing configuration.

Optimal Rotor Blade Design for Tidal In-stream Energy (조류발전용 로터 블레이드의 최적 형상 설계)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Marine current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop tidal in-stream energy conversion system in coastal area. The objective of study is to investigate harnessing techniques of tidal current energy and to design the a 100 kW horizontal axis tidal turbine using blade element momentum theory with Prandtl's tip loss factor for optimal design procedures. In addition, Influence of Prandtl's tip loss factor at local blade positions as a function of tip speed ratio was studied, and the analysed results showed that power coefficient of designed rotor blade using NACA 63812 was 0.49 at rated tip speed ratio.

A Propeller Design Method with New Blade Sections (새로운 단면을 이용한 고효율 프로펠러 설계법)

  • J.T.,Lee;C.S.,Lee;M.C.,Kim;J.Y.,Ahn;H.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.29-40
    • /
    • 1989
  • A new blade section of propeller is developed to obtain higher propeller efficiency and better cavitation performance. Eleven foil sections are carefully designed and manufactured to compare the lift-drag characteristics and cavitation performances. It is expected that the developed section behaves better in the vicinity of the ship's wake, where the angle of attack variation is large, because of its wider width in lift-drag and cavitation-free bucket diagrams. A propeller design method using the selected foil section is presented. Three chordwise loading shapes are selected to investigate the influence of the lift-drag ratios on the propeller efficiencies and cavitation performances. Three propellers are designed, which correspond to the selected chordwise loading shapes. Two more propellers which use existing foil sections are designed to compare the section performance.

  • PDF

A Study on Aerodynamic Characteristics of Busemann Type Supersonic Biplane (부즈만 형의 초음속 복엽항공기에 대한 공력 특성 연구)

  • Mun, Chan-Ung;Kim, Hun;Yu, Gi-Wan
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.425-430
    • /
    • 2013
  • 본 연구에서 전산유체해석 프로그램인 EDISON_CFD를 이용하여 차세대 항공기 날개 형상으로 각광받고 있는 초음속 비행조건을 갖는 Busemann 형식의 복엽기 형상에 대한 공력특성을 연구하였다. 날개는 압축성 조건에서 2차원 에어포일로 간략화 하여 모델링하였으며, 마하수에 따라 발생하는 충격파와 팽창파의 상호작용을 통한 소닉붐의 감소 형태를 분석해 보고, 마하수에 따른 항력계수를 얻어내었으며, 익형과 항력계수, 소닉붐의 상관관계를 분석하여 초음속항공기에서 복엽기 형상이 가지는 장단점에 대하여 연구하였다.

  • PDF

An Experimental Study on High Angle of Attack Static Stability Analysis For the Aerodynamic Design of Canard Type High Maneuver Aircraft (카나드 형상 고시동 항공기 공력설계를 우한 높은 받음각 정적 안정성 분석 실험 연구)

  • Chung, In-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.575-580
    • /
    • 2007
  • During the conceptual design phase of a canard type high maneuverable aircraft, the low speed small scale wind tunnel test was conducted to investigate the high angle-of-attack static stability of the aircraft. In this study, 1/50th scale generic canard-body-wing model was used for the small scale wind tunnel test. For the analysis of static stability including high angle-of-attack nonlinear characteristics, the vertical tail effects were studied due to canard deflections. In addition, the nose chine effects were studied at high angle-of-attack. Based on the results obtained from the experimental study, the configuration change effects for canard type aircraft on high angle-of-attack static stability have been able to analyze.

A Study on the Aileron Reversal Characteristics of CUS Composite Aircraft Wings (CUS 복합재료 항공기 날개의 에일러론 역전 특성 연구)

  • Kim, Keun-Taek;Song, Oh-Seop
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.149-159
    • /
    • 2009
  • This paper deals with an analytical study on the aileron reversal characteristics of anisotropic composite aircraft wings modelled as thin-walled beam and having extension-twist structural couplings caused by Circumferentially Uniform Stiffness (CUS) layup scheme. For a study on the aileron reversal of CUS composite wings, it is essential to consider the following effects such as extension-twist structural coupling, wing aspect ratio, and ratio of span-wise and chord-wise length of aileron to wing, initial angle of attack, and sweep angle, etc. The results on the aileron reversal could have a significant role in more efficient designs of thin-walled composite wing aircraft for which this aeroelastic instability is one of the most critical ones.

  • PDF

Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge (항공기 날개 앞전의 레이더흡수구조 최적화)

  • Jang, Byung-Wook;Park, Sun-Hwa;Lee, Won-Jun;Joo, Young-Sik;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.268-274
    • /
    • 2013
  • In this paper, objective functions are defined for optimization of radar absorbing structures (RAS) on the aircraft wing leading edge. RAS is regarded as a single layer structure made of dielectrics. Design variables are the real and imaginary parts of complex permittivity. Reflection coefficient(RC) and radar cross section(RCS) are used in the objective function respectively. Transmission line theory is employed to calculate the RC. The RCS is evaluated by using physical optics(PO) for a leading edge part model. Genetic algorithm(GA) is used to perform optimization procedures. The radar absorbing performance of designed RAS is assessed by the RCS of a wing which has RAS on the leading edge.

Multidisciplinary Aircraft Wing Design Using the MDO Framework (MDO 프레임워크 개발을 통한 항공기 날개 통합최적화 설계)

  • Lee, Jae-Woo;Kim, Jong-Hwan;Jeang, Ju-Young;Jeon, Kwon-Su;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.23-33
    • /
    • 2004
  • MDO framework, which provides multidisciplinary system design and optimization environment, requires integration of the analyses codes developed at various computer languages and operating systems, integration of CAD and DBMS, and development of complex GUI. Emphases must be given to the software modification and upgrades in conjunction with the analysis code addition and MDO method implementation. In this study, techniques about system integration and analysis code interface have been studied extensively, and the database design and communication methods which can handle the MDO methods like MDF and CO have been studied. Using the dedicated MDO framework developed for the air vehicle design, the multidisciplinary fighter aircraft wing design has been performed to demonstrate the efficiency and usefulness of the software. Optimum wing configuration is derived using the gradient-based optimization methods within thirty design iterations.

Numerical Investigation of The Effect of External Stores on Tail Wing Surfaces of a Generic Fighter Aircraft (전투기 형상의 외부장착물이 꼬리날개에 미치는 영향에 대한 수치적 연구)

  • Kim, Min-Jae;Kwon, Oh-Joon;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.211-219
    • /
    • 2008
  • A three-dimensional inviscid flow solver has been developed based on unstructured meshes for the investigation of the effect of the external stores on the tail surfaces of a generic fighter aircraft. The numerical method is based on a vertex-centered finite-volume discretization and an implicit point Gauss-Seidel time integration. The calculations were made for a steady flow and the computed results were compared with experimental data to validate the flow solver. An unsteady time-accurate computation of the generic fighter aircraft with external stores at transonic flight conditions showed that the external stores cause unsteady loading on the horizontal tail surface due to the mutual interference between their wake and the horizontal tail surface. It was shown that downward deflection of the trailing edge flap significantly reduces the undesirable interference effect.

Numerical Simulation for Transonic Wing-Body Configuration using CFD (CFD를 이용한 천음속 날개-동체 형상 해석)

  • Kim, Younghwa;Kang, Eunji;Ahn, Hyokeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • The flowfield around transonic wing-body configuration was simulated using in-house CFD code and compared with the experimental data to understand the influence of several features of CFD(Computational Fluid Dynamics) ; grid dependency, turbulence models, spatial discretization, and viscosity. The wing-body configuration consists of a simple planform RAE Wing 'A' with an RAE 101 airfoil section and an axisymmetric body. The in-house CFD code is a compressible Euler/Navier-Stokes solver based on unstructured grid. For the turbulence model, the $k-{\omega}$ model, the Spalart-Allmaras model, and the $k-{\omega}$ SST model were applied. For the spatial discretization method, the central differencing scheme with Jameson's artificial viscosity and Roe's upwind differencing scheme were applied. The results calculated were generally in good agreement with experimental data. However, it was shown that the pressure distribution and shock-wave position were slightly affected by the turbulence models and the spatial discretization methods. It was known that the turbulent viscous effect should be considered in order to predict the accurate shock wave position.