• Title/Summary/Keyword: 날개 구조

Search Result 323, Processing Time 0.023 seconds

Evaluation of Static Structural Integrity for Composites Wing Structure by Acoustic Emission Technique (음향방출법을 응용한 복합재 날개 구조물의 정적구조 건전성 평가)

  • Jun, Joon-Tak;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.780-788
    • /
    • 2009
  • AE technique was applied to the static structural test of the composite wing structure to evaluate the structural integrity and damage. During the test, strain and displacements measurement technique were used to figure out for static structural strength. AE parameter analysis and source location technique were used to evaluate the internal damage and find out damage source location. Design limit load test, the 1st and 2nd design ultimate load tests and fracture test were performed. Main AE source was detected by an sensor attached on skin near by front lug. Especially, at the 1st design ultimate test, strain and displacements results didn't show internal damage but AE signal presented a phenomenon that the internal damage was formed. At the fracture test, AE activities were very lively, and strain and displacements results showed a tendency that the load path was changed by severe damage. The internal damage initiation load and location were accurately evaluated during the static structural test using AE technique. It is certified from this paper that AE technique is useful technique for evaluation of internal damage at static structural strength test.

Structural Test and Safety Evaluation for Fin Assembly of Scientific Sound Rocket (과학로케트 날개조립체의 구조강도시험 및 안전성 평가)

  • 허용학;김갑순;주진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3395-3403
    • /
    • 1994
  • The structural test technique and equipment for strength test of astronautical structures, such as rocket, were presented in this paper. Structural strength tests of the fin assembly with fin and fin frame in the scientific sound rocket were performed with load levels of 100% limit load and 150% ultimate load of design lift force. Safety factors in each part of the fin assembly were calculated at these two load levels and the stiffnesses based on the measured deflection of fin assembly and strains on fin and fin frame were evaluated at these two load level. As the result of structural test, the fin assembly was estimated to be safe.

A study on 2D/3D analysis for 2014 Inha Human Power Aircraft main spar (2014년 인하대학교 인력항공기 Main spar의 2차원/3차원의 해석 비교 및 설계초기단계 적용가능성 연구)

  • Lee, Ye-Ho;Yoon, Do-Hee
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.268-268
    • /
    • 2016
  • 기계적 장치의 도움 없이 오직 사람의 힘으로만 비행을 해야 하는 인간 동력 항공기는 높은 동력 효율 및 최소한의 무게를 지니며 고세장비(High Aspect Ratio)날개 특성을 가지고 있다. 따라서 공력 및 구조적 최적화가 필요하며 고세장비 날개 특성에 따른 대변위 해석이 필요하다. 비행가능한 특정 순항속도에서 3차원 날개에 작용하는 양력에 대해, Edison Solver(Educational program for finite element analysis (CASADSolver))를 이용하여 2차원 spar에 분포하중으로 적용하였을 때의 응력 분포 및 끝단 변위 분석하고자 한다. 또한, 2차원 spar에 일정한 간격으로 집중하중을 작용하였을 때 생기는 변위와 3차원 spar를 이용한 하중해석 결과의 변위를 비교하고자 한다. 위의 두 분석 결과로 비교적 계산자원이 많은 3차원 해석이 아닌 2차원 해석으로 인간 동력 항공기 날개 설계 초기단계에 적용가능한 지에 대해 비교한다.

  • PDF

중형 수평축 풍력발전용 복합재 회전날개의 특수 하중조건을 고려한 안전성 평가에 관한 연구

  • 공창덕;김인권;방조혁;정종철;강명훈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.27-27
    • /
    • 2000
  • 본 연구에서는 풍력발전용 복합재 회전날개의 개념설계 및 상세 설계 과정에서 고려하지 않았던 특수 하중 조건에 대한 유한요소해석을 통해 회전날개의 구조적 안전성을 확인하였다. 하중조건으로는 IEC1400-1 국제규격을 기초한 GL 인증규격에 정의된 것으로 대기온도변화에 의한 열 응력 효과로 $40^{\cire}$ 에서 경화시킨 후 운용되는 환경조건이 $-20^{\cire}$ 인 경우를 고려하였으며, 실제 운용중의 회전날개 표면에 발생 할 수 있는 결빙에 따른 하중증가 효과, 그리고 풍력발전기의 급작스런 정지와 정상 작동 중에 순간적인 돌풍 및 발전기 고장 등으로 발생되는 동적 하중증가 효과 등을 고려하였다.(중략)

  • PDF

Study on the Flow Around an Elliptic Wing Using Flow Visualization Technique (유동가시화를 통한 타원형날개주위 유동연구)

  • Beom-Soo Hyun;Moon-Chan Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.94-103
    • /
    • 1993
  • This study deals with an investigation on the tip vortex generated by an elliptic wing with section shapes of NACA 0020. The flow structure on the wing surface is investigated by using tufts test as well as observing the cavitation pattern. The surface pressure on a foil surface is measured to complement the visualized flow field. Results show that a strong spanwise pressure gradient is a definite contributor on the formation of tip vorex, and the fluids from both sides contribute to the evolutionary process of tip vortex. On the other hand, a series of experiments are conducted to investigate the detailed structure of tip-vortex at various angles of attack. The tip-vortex formation and development are observed by producing a cavitation, and then by a laser sheet technique in conduction with a dye injection method. The shape of tip-vortex and the distance between a vortex core and the trailing vortex sheet are found to vary with the angle of attack. Overall features of tip flow are evaluated to complement the vortex model based on inviscid theory.

  • PDF

Nonlinear Static Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects (큰 가로세로비를 가지는 날개의 대변형 효과를 고려한 비선형 정적 공탄성 해석)

  • Yu, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.31-36
    • /
    • 2006
  • In this study, nonlinear static aeroelastic analysis system for a high-aspect-ratio wing are developed using the transonic small disturbance (TSD) and large deflection beam theory and validated. For the coupling between fluid and structure, the transformation of displacement from the structural mesh to aerodynamic one is performed by the shape function of the beam finite element and the inverse transformation of force by work equivalent load concept. Also, for the static aeroelastic analysis of the wing the use of TSD aerodynamics are justified. The validation of the system includes one of the efficient transformation methods of force and displacement.

Development of Resin Film Infusion Carbon Composite Structure for UAV (수지필름 인퓨전 탄소섬유 복합재료를 적용한 무인항공기용 구조체 개발)

  • Choi, Jaehuyng;Kim, Soo-Hyun;Bang, Hyung-Joon;Kim, Kook-Jin
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • Fiber reinforced composites fabricated by the resin film infusion (RFI) process, which is one of the outof-autoclave process, have the advantage of significantly reducing the processing cost in large structures while having excellent mechanical properties and uniform impregnation of the resin. In this study, we applied RFI carbon fiber composites to unmanned aerial vehicle structures to improve structural safety and achieve weight reduction. The tensile test results showed that the strength was 46% higher than that of generic T300 grade plain weave carbon fiber composites. As a result of the layup design and finite element analysis of the composite wing structure using the above material properties, the wing tip deflection is decreased by 31%, the structural safety factor is increased by 28% and the weight of the entire structure can be reduced by more than 10% compared to the reference model using glass fiber composite material.

Study on Out-of-plane Properties and Failure Behavior of Aircraft Wing Unit Structures (항공기 날개 부분 단위구조체의 면 외 방향 물성 및 파손거동에 관한 연구)

  • Yoon, Chang-Mo;Lee, Dong-Woo;Byun, Joon-Hyung;Tran, Thanh Mai Nguyen;Song, Jung-il
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.106-114
    • /
    • 2022
  • Carbon fiber-reinforced plastic, well known high specific strength and high specific stiffness, have been widely used in the aircraft industry. Mostly the CFRP structure is fabricated by lamination of carbon fiber or carbon prepreg, which has major disadvantage called delamination. Delamination is usually produced due to absence of the through-thickness direction fiber. In this study, three-dimensional carbon preform woven in three directions is used for fabrication of aircraft wing unit structure, a part of repeated structure in aircraft wing. The unit structure include skin, stringer and rib were prepared by resin transfer molding method. After, the 3D structure was compared with laminate structure through compression test. The results show that 3D structure is not only effective to prevent delamination but improved the mechanical strength. Therefore, the 3d preform structure is expected to be used in various fields requiring delamination prevention, especially in the aircraft industry.

Rotor Stability and Whirl Flutter Analysis of Smart UAV (스마트무인기 로터 안정성 및 훨플러터 해석)

  • Lee, Myeonk-Kyu;Shen, Jinwei
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.205-212
    • /
    • 2008
  • This paper describes the modeling data and final analysis results of rotor resonance, rotor aeroelastic stability and whirl flutter stability for Smart UAV (SUAV). The effects of wing beamwise, chordwise and torsional stiffness on the whirl flutter stability were investigated considering the possibility of design change of SUAV wing structure. The parametric study showed that wing torsional and beamwise stiffness changes have much stronger influence on the wing mode damping than chordwise stiffness. It was analytically demonstrated that the final designed rotor system is aeroelastically stable and free from resonance, and that rotor/pylon/wing system of SUAV TR-S4 has enough rotor stability and whirl flutter stability margin.

  • PDF

Numerical Analysis of Aerodynamics Characteristics of Two Dimensional Airfoil Section with Elastic Flap (탄성 플랩을 갖는 2차원 날개 단면 공력 특성 전산해석)

  • Won, Chang-Hee;Lee, Joo-Yong;Lee, Sungsu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • This study presents computational analysis of aerodynamic characteristics of two-dimensional airfoil sections with elastic flap attached at the trailing edge. EDISON_CFD was utilized to simulate the incompressible turbulent flow around the foil and MIDAS_IT was employed to estimate the deflection of the flap under the pressure loading. Using iterative procedure, the terminal deflection was estimated and the resulting lift-drag ratio indicates that the favorable effect of the flap is expected within certain amount of angle of attack.