• Title/Summary/Keyword: 날개표면 압력분포

Search Result 16, Processing Time 0.02 seconds

Numerical Experimentation of a 2-D B-Spline Higher Order Panel Method (2차원 B-스플라인 기저 고차패널법의 수치실험)

  • Chung-Ho Cho;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.27-36
    • /
    • 2000
  • A higher order panel method based on B-spline representation for both the geometry and the velocity potential is developed for the solution of the flow around two-dimensional lifting bodies. Unlike Lee/Kerwin, who placed multiple control points on each panel and solved the overdetermined system of equation by the least square approach, the present method places only as many number of control points as required by the unknowns of the problem. Especially, a null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. The new approach, is validated to be accurate through comparison with the analytic solution for a 2-D airfoil and to be less time-consuming due to fewer number of panels required than that used in Lee/Kerwin.

  • PDF

A Convergent Study on Flow Analysis at the Surface due to Shape of Aircraft (항공기의 형상에 따른 표면에서의 유동해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.151-155
    • /
    • 2020
  • In this study, the velocity distribution and pressure of the flow with the shape of the aircraft were analyzed to investigate its flight performance. In order to compare the flow rate and its pressure applied on the surface of airplane each other, models A and B have the blunt and sharp shapes as the distinctive shapes of airplanes. It can be inferred that the lower the maximum speed of the flow around the airplane, the less resistance the navigation produces, the less fuel consumption, which is more efficient for the sharp model B than the blunt model A. As the result of this study, the wing area and the head part of the body should be designed to withstand the pressure greater than the body. It is shown that the sharp model B can withstand more pressure due to flow than the blunt model A.

Numerical Study on Propeller Cavitation and Pressure Fluctuation of Model and Full Scale ship for a MR Tanker (MR Tanker 실선 및 모형선 프로펠러 캐비테이션 및 변동압력 수치해석 연구)

  • Park, Il-Ryong;Kim, Ki-Sup;Kim, Je-In;Seol, Han-shin;Park, Young-Ha;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Propeller cavitation extent, pressure fluctuation induced by cavitation, pressure distribution on propeller blade, total velocity distribution and nominal wake distribution for a MR Taker were computed in both conditions of model test and sea trial using a code STAR-CCM+. Then some of the results were compared with model test data at LCT and full-scale measurement (Ahn et al (2014); Kim et al (2014)] in order to confirm the availability of a numerical prediction method and to get the physical insight of local flow around a ship and propeller. The nominal wake distributions computed and measured by LDV velocimeter on the variation of on-coming velocity show the wake contraction characteristics proposed by Hoekstra (1974). The numerical prediction of propeller cavitation extent on a blade angular position and pressure fluctuation level on each location of pressure sensors are very similar with the experimental results.

Computational Analysis of the Delta Wing-Cylindrical Body Configuration Using the Three-Dimensional Patched-Grid Algorithm (3차원 patched-grid 알고리즘을 이용한 삼각 날개-원통형 동체 형상 전산 해석)

  • Park, Hyeon Don;Kim, Young Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • A structured grid system can be efficiently constructed by applying the patched-grid algorithm that alleviates many constraints of the conventional structured grid system. Three approaches were applied to case 4 of the EFD-CFD workshop: delta wing-cylindrical body shape to solve the existing grid generation problems and verify the results by comparing them with experimental data. Surface pressure distributions slightly differed from the experimental data at high angles of attack. The slope variation of the pitching moment with Mach number is analyzed and the variation can be explained with the tuck under phenomenon. In the supersonic region, the bow shock waves in front of the shape expand the region generating lift up to the rear of the configuration. Also, the tendency of the pitching moment with both Mach number and angle of attack was analyzed by comparing the positions of the center of pressure and the center of gravity.

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.

Unsteady Aerodynamic Characteristics of an Non-Synchronous Heaving and Pitching Airfoil Part 1 : Frequency Ratio (비동기 히브 및 피치 운동에 따른 에어포일 비정상 공력 특성 Part 1 : 진동 주파수 비)

  • Seunghwan Ji;Cheoulheui Han
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.54-62
    • /
    • 2023
  • Flapping-wing air vehicles, well known for their free vertical take-off and excellent flight capability, are currently under intensive development and research. While most of the studies have explored the effect of various parameters of synchronized motions on the unsteady aerodynamics of flapping wings, limited attention has been given to the effect of nonsynchronous motions on the unsteady aerodynamic characteristics of flapping wings. In the present study, we conducted a numerical analysis to investigate the unsteady aerodynamic characteristics of an airfoil flapping with different frequency ratios between pitch and heave oscillations. We identified the motions and angle of attacks due to nonsynchronous motions. It was found that the synchronous motion produced thrust with zero lift, but the nonsynchronous motion generated a large lift with little drag. The aerodynamic characteristics of the airfoil undergoing the non-synchronous motion were also analyzed using the vorticity distributions and the pressure coefficient around and on the airfoil. When r was equal to 0.5, larger leading and trailing edge vortices were observed compared to the case when r was equal to 1.0, and these vortices significantly affected the aerodynamic characteristics of the airfoil undergoing the nonsynchronous motion. In future, the effect of pitch amplitude on the unsteady aerodynamic characteristics of the airfoil will be studied.