• Title/Summary/Keyword: 난포액

Search Result 185, Processing Time 0.022 seconds

Effect of ${\alpha}$-Tocopherol Treatment and Freezing for In Vitro Bovine Embryo Production in Korean Native Cows (한우 체외수정란 생산을 위한 ${\alpha}$-Tocopherol 첨가와 동결 효과)

  • Jung, Jin-Woo;Son, Jun-Kyu;Choe, Chang-Yong;Suh, Sang-Won;Choi, Jin-Seok;Cho, In-Cheol;Han, Sang-Hyun;Kang, Tae-Young;Kang, Min-Soo;Kim, Duck-Im;Kim, Hyun-Jong;Cho, Sang-Rae
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.369-375
    • /
    • 2011
  • The aim of this study was to evaluate the effect of ${\alpha}$-tocopherol on blastocysts development and subsequent cryosurvival of the vitrification. The ${\alpha}$-tocopherol(0, 100, 200, 400 ${\mu}M$) was added in to culture medium for the bovine embryos. The blasocysts from the ${\alpha}$-tocopherol and untreated control groups were then frozen-thawed, and their cryosurvival was assessed by in vitro culture for 48 h. There were no differences in the overall cleavage rate($56.14{\pm}4.66$, $58.18{\pm}4.70$, $62.97{\pm}6.86$ and $51.17{\pm}7.28$) among four treatment groups. However, in blastocyst development and total cell number were significantly higher in ${\alpha}$-tocopherol 200 ${\mu}M$ ($38.60{\pm}7.12$; $106.33{\pm}3.50$) to culture medium than other treatment groups($29.30{\pm}5.24$, $31.60{\pm}7.12$ and $26.37{\pm}4.18$; $101.36{\pm}5.12$, $97.27{\pm}2.87$, and $91.23{\pm}7.52$ respectively). Before and after vitrification, the total cell number and blastocyst development of embryo were significantly higher in July to August than September to October. In conclusion, addition of ${\alpha}$-tocopherol 200 ${\mu}M$ to in vitro bovine embryo culture medium was beneficial for improving embryo quality by decreasing the embryo damage blsstocysts cell number and improving the tolerance of the embryos to cryopreservation.

Morphologic Parameters and in vitro Maturational Competence of Human Immature Oocyte Obtained from Stimulated IVF Cycle (미성숙난자의 형태학적 지표와 체외성숙능과의 관계)

  • An, So-Jung;Jee, Byung-Chul;Moon, Jeong-Hee;Lee, Jung-Ryeol;Suh, Chang-Suk;Kim, Seok-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • Objective: This study was performed to investigate whether cumulus morphology and oocyte diameter influence on in vitro maturation (IVM) of human germinal vesicle (GV) stage oocytes obtained from stimulated in vitro fertilization (IVF) cycles. Methods: Forty-one GV stage oocytes were obtained from 21 patients who received ovarian hyperstimulation and IVF. According to cumulus morphology before denudation, GV oocytes were classified into oocytes with dispersed cumulus cells (CCs) or compacted CCs. The diameters of denuded oocytes, both including and excluding the zona pellucida, were measured. All oocytes were cultured in commercial IVM medium. Maturation was defined as extrusion of the first polar body and the matured oocytes were inseminated by ICSI method. Results: Overall maturation and fertilization rate were 56.1% and 73.9%. Matured oocytes had significantly higher proportion of oocytes with dispersed CCs compared to oocytes failed to mature (91.3% vs. 55.6%, p=0.023). There were no significant differences of oocytes outer ($155.7{\mu}m$ vs. $152.4{\mu}m$, NS), inner ($114.3{\mu}m$ vs. $113.4{\mu}m$, NS) diameters and zona thicknesses ($41.3{\mu}m$ vs. $39.1{\mu}m$, NS) between matured and not-matured oocytes. In-vitro maturation rate of oocytes with dispersed CCs was significantly higher than which of oocytes with compacted CCs (67.7% vs. 20.0%, p=0.044). Oocyte diameters (outer and inner) and thicknesses were not related with maturational competence. Conclusion: Our results suggest that in vitro maturational competence of GV stage oocytes obtained from stimulated IVF cycles is closely associated with the cumulus morphology but not oocyte diameter.

Developmental Capacity of Bovine Follicular Oocytes after Ultra-Rapid Freezing by electron Microscope Grid II.Cryopreservation of In Vitro Matured Bovine Oocytes (Electron Microscopic Grid를 이용한 초급속 동결이 소 난포란의 발달능에 미치는 영향. II. 체외 성숙된 소 미수정란의 동결에 관한 연구)

  • 김은영;김남형;이봉경;윤산현;박세필;정길생;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • This study was carried out to confirm whether the developmental capacity of bovine mature oocytes frozen ultra-rapidly using electron microscopic(EM) grids and EFS30 can be obtained, and whether the cryoprotectants and the freezing method used in this study effect detrimentally to the bovine oocytes by indirect immunocytochemistry. As freezing solution, we used EFS30 which consisted of 30% ethylene glycol, 0.5 M sucrose, 18% ficoll and 10% FBS added in D-PBS. The results obtained in this experiment were summarized as follows: When the effects of cryoprotectant and freezing procedure on the microtuble, micrfilament and chromatin morphology of oocytes were evaluated using indirect immunocytochemistry, the results of freezing as well as exposure group were not different with that of the control oocytes. When the fertilization abnormality after ultrarapid freezing of bovine mature oocytes was examined by Hoechst staining, the rates of total penetration(96.7, 9.0%), normal two pronuclei formation(74.6, 68.9%) and mean number of sperm / oocyte(1.50, 1.44) were not different between control and freezing group. In addition, when the developmental capacity of frozen-thawed of oocytes(85.5%) was survived, 74.5% of them were cleaved and 31.4% of cleaved embryos were developed to blastocyst. These data were similar to those of the control(76.0%, 34.6%) and exposure(74.5%, 33.0%) except survival rates. Also, when the total cell number of blastocysts produced from the each treatment at day after IVF was examined by hoechst staining, there were not different among groups. There results demonstrate that developmental capacity of frozen-thawed bovine mature oocytes can be successfully obtained by ultra-rapid freezing method using EM grid and EFS30 solution.

  • PDF

Comparison of Nuclear Status and Developmental Potential between Polar Body Extruded Oocytes and Non-extruded Oocytes on in vitro Maturation and Development of Porcine Follicular Oocytes (돼지 난모세포의 체외 성숙 후 극체 방출 및 미방출란의 핵형과 배발달율)

  • Kim, H.J.;Cho, S.R.;Choe, J.Y.;Choi, S.H.;Han, M.H.;Son, D.S.;Kim, Y.G.;Lee, S.S.;Ryu, I.S.;Kim, I.C.;Kim, I.H.;Im, K.S.
    • Journal of Embryo Transfer
    • /
    • v.21 no.3
    • /
    • pp.169-175
    • /
    • 2006
  • The objective of this study was carried out to examine the polar body extrusion of in vitro matured porcine follicular oocytes as a non-invasive marker of oocyte quality to know the developmental competence in advance. The porcine oocytes matured for 48 hours were examined the polar body extrusion and some parts were stained. The examined oocytes were matured for additional $16{\sim}18$ hours and activated with 7% ethanol and cultured in $5{\mu}g/ml$ cytochalasin B for 5 hours for diploid formation. The treated oocytes were washed and cultured for 7 days. The polar body extrusion and degeneration rates were varied with $9.9{\sim}52.4%$ and $21.4{\sim}61.8%$ by repetition. The polar body extruded oocytes were shown the polar body chromosome and metaphase II plate by staining. However the non-extruded oocytes were shown expanded nucleus with 39.1%, premature chromosome condensation with 19.6%, metaphase I plate with 10.9 %, metaphase II with 13%, condensed chromatin with 6.5%, and absent nuclear material with 8.7%. The oocytes that were not examined for the polar body extrusion were cleaved 45.0%, and developed to blastocyst stage with 11.3%. In examined oocytes for polar body extrusion,. the polar body extruded oocytes were cleaved 94.2% and developed with 42.5%. This result suggests that discarding of the degenerating oocytes and oocytes that not extruded polar body will be effective for experiments of culturing effect in porcine embryos and embryo biotechnology.

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF