• Title/Summary/Keyword: 난분해성물질

Search Result 28, Processing Time 0.031 seconds

Spatial-Temporal Characteristics for Non-degradable materials in Dongjin Watershed (동진강수계 난분해성 물질의 시공간적 거통 특성 분석 연구)

  • Kim, Se Min;Kim, kyung Oh;Park, Young Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.424-424
    • /
    • 2019
  • 수질오염 저감을 위한 유기물질의 처리를 위해 생물학적 처리에 중점을 둔 하 폐수 처리시설의 증가에 따라 BOD로 대표되는 생분해성 유기물질은 꾸준히 감소하였으나, COD농도의 경우 뚜렷한 감소를 보이지 않고 있다. 유기물질 중 특히 난분해성 물질의 증가는 상수원으로 사용되는 하천의 경우 조류 증식 등을 유발하고 여과공정에 영향을 미쳐 상수처리의 효율을 떨어뜨리는 등의 환경적인 문제를 야기할 수 있다. 기존 BOD, COD로 대표되는 유기물질의 경우 각 유기물질별 상관관계 및 유출특성 등에 대한 연구는 많이 이루어졌으나, 난분해성 물질에 대한 조사는 상대적으로 미진한 실정이다. 특히 동진강수계는 '새만금 제2단계 수질개선종합대책' 등 장기적인 수질개선 대책들이 추진되면서 하천의 BOD5 및 TP는 감소추세를 보이고 있으나, COD는 개선되지 않고 증가하는 추세를 보이고 있다. 동진강의 말단부의 경우 COD/BOD5의 비율이 지속적으로 증가하는 추세를 보이고 있어 상대적으로 난분해성 유기물질에 대한 관리의 중요성이 대두되고 있다. 이러한 COD 및 COD/BOD5의 증가 추세는 국내 4대강에서 전반적으로 나타나고 있는 추세로서, 정부는 2013년부터 하천 및 호소의 생활환경기준에 TOC 항목을 도입하여 2016년부터 호소환경기준의 대표항목을 COD에서 TOC로 대체하였으며, 폐수배출시설에 대해서도 점차적으로 확대 적용할 계획으로, 난분해성물질을 포함하는 총유기물질 관리를 위해서 수질 및 수생태계 환경기준에서 유기물질에 대한 환경기준을 BOD5와 COD에서 TOC로 변경하는 정책을 추진 중에 있다. 본 연구에서는 동진강 유역의 본류 및 지류에서 TOC등 유기물질의 시공간적인 분포와 오염원별 배출특성을 현장조사를 통해 조사 분석하였다. 조사 시기는 건기시, 강우시로 구분하여 수행하였으며 조사항목은 일반수질항목, 유기물질 항목, 유기물질 성상 분석 등에 대하여 수행하였다. 난분해성물질 관리를 위한 기초자료확보를 통하여 새만금호의 수질개선 및 목표수질 달성에 기여 할 것으로 판단된다.

  • PDF

A Study on the Treatment of Leachate Using Combined Membrane Process (조합형 분리막공정을 이용한 침출수 처리에 관한 연구)

  • 강문선;최광호;손성섭
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.213-219
    • /
    • 2000
  • In order to resolve the problem of aged land[jlJ leachate treatment, limitation in removal of non-biodegradable materials and denitrification caused by carbon source shortage, we applied combined process consisted of 5MBR and RO to leachate treatment. We perfonned 5MBR pilot plant tests on Yongin City for a period of about lOOdays, demonstrated the performance of the SlVlUR process (($NH_3$-N removal efficiency; 90%). But there was also limitation to removal of non-biodegradable materials and denitrification. In full-scale plant we observed the IXrformance of combined process (SMI3R + R/O) in order to confirm the expected treatment efficiencies. Their results were approximately 98%, 94% of treatment efficiency in case of $COD_{Cr}$(<3 mg/L) and TN(<50 mg/L)respectively and the results of treatment were stable.

  • PDF

Pseudomonas sp. 의 균주개발에 유용한 클로닝 백터 pKU11 의 조립

  • 강형일;고상근;이영록
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.410-414
    • /
    • 1992
  • Numerical identification was carried out for an isolate of Streptomyces strain producing the extracellular p-lactamase inhibitor. Fifty taxonomic unit characters were tested and the data were analyzed numerically using the TAXON program. The isolate was identified to the major cluster 5 of Streptomyces and it was best matched to Streptomyces omiyaensis which is a synonym of Streptomyces exfoliatus. Therefore, it was concluded that the isolate was identified to be a strain (SMF 19) of Streptomyces exjbliatus.

  • PDF

Estimation of Biochemical Degradation in Landfill Waste (사후관리단계 매립지의 생화학적 안정성 평가 연구)

  • Yoo, Kee-Young;Yi, So-Ra
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.109-118
    • /
    • 2001
  • In the stage of aftercare in waste landfill management, it is very difficult to estimate the decomposition of landfill waste by excavation which damages the low permeability layer. This study developed the method to analyze the amount of landfill waste degraded bio-chemically as the types of leachate and gas, and applied the method to Nanjido landfill(NL). Application result showed that 70% of high biodegradable waste in NL was transformed to gas and leachate by 2000. Also this study suggested that the transformed portions of waste name for "Decomposition Index" at that time and the proposed method must be modified according to the biological condition of waste degradation.

  • PDF

Degradation of Bisphenol A and Removal of Its Estrogenic Activity by Two Laccase Transformants of Irpex lacteus (기계충버섯 형질전환체를 이용한 비스페놀 A의 분해와 에스토로겐 활성 제거)

  • Kim, Yun-Jung;Song, Hong-Gyu;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.199-202
    • /
    • 2008
  • A white rot fungus Irpex lacteus produced lignin degrading enzymes, which showed degrading activity against various recalcitrant compounds. However, laccase, one of the lignin degrading enzymes, was too low to be assayed by spectrophotometry using o-tolidine as the chromogenic substrate in this fungus under various culture conditions. A laccase expression vector was constructed using a cDNA from Phlebia tremellosa with the constitutively expressed promoter of glyceraldehydes-3-phosphate dehydrogenase gene, and introduced into I. lacteus by the restriction enzyme mediated integration transformation through the protoplast-$CaCl_2$ procedure. Two transformants showed highly increased laccase activities at the early growth phase in the minimal liquid medium, and they not only degraded bisphenol A, a notorious endocrine disrupting chemical, but also removed the estrogenic activity effectively.

A Study of Organic Matter Fraction Method of the Wastewater by using Respirometry and Measurements of VFAs on the Filtered Wastewater and the Non-Filtered Wastewater (여과한 하수와 하수원액의 VFAs 측정과 미생물 호흡률 측정법을 이용한 하수의 유기물 분액 방법에 관한 연구)

  • Kang, Seong-wook;Cho, Wook-sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • In this study, the organic matter and biomass was characterized by using respirometry based on ASM No.2d (Activated Sludge Model No.2d). The activated sludge models are based on the ASM No.2d model, published by the IAWQ(International Association on Water Quality) task group on mathematical modeling for design and operation of biological wastewater treatment processes. For this study, OUR(Oxygen Uptake Rate) measurements were made on filtered as well as non-filtered wastewater. Also, GC-FID and LC analysis were applied for the estimation of VFAs(Volatile Fatty Acids) COD(S_A) in slowly bio-degradable soluble substrates of the ASM No.2d. Therefore, this study was intended to clearly identify slowly bio-degradable dissolved materials(S_S) and particulate materials(X_I). In addition, a method capable of determining the accurate time to measure non-biodegradable COD(S_I), by the change of transition graphs in the process of measuring microbial OUR, was presented in this study. Influent fractionation is a critical step in the model calibrations. From the results of respirometry on filtered wastewater, the fraction of fermentable and readily biodegradable organic matter(S_F), fermentation products(S_A), inert soluble matter(S_I), slowly biodegradable matter(X_S) and inert particular matter(X_I) was 33.2%, 14.1%, 6.9%, 34.7%, 5.8%, respectively. The active heterotrophic biomass fraction(X_H) was about 5.3%.

  • PDF

Comparison of Biodegradation of pyrene between Rhizosphere Soil and Non-rhizosphere Soil (Rhizosphere 토양과 Non-rhizosphere 토양에서 Pyrene의 분해속도 비교)

  • 김상채;이의상;서성규
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 1998
  • Pyrene is a common petroleum contaminant. This compound is recalcitrant to biological degradation and persists long in contaminated environments. A microcosm experiment was conducted to investigate the degradation rate of pyrene in three different of soil : rhizosphere soil ; non-rhizosphere soil ; and sterilized soil. The degradation rate followed the order of rhizosphere soil)non-rhizosphere soil)sterilized soil. And the rate did not change significantly when organic acids commonly found in the rhizosphere were added to each soil but it seemed to be well related to the increase of the number of microorganisms. Overall, it appears that pyrene is degraded faster in the rhizosphere soil which has the higher microorganism density.

  • PDF

Applications of a Hybrid System Coupled with Ultraviolet and Biofiltration for the Treatment of VOCs (휘발성유기화합물 처리를 위한 고도산화법과 고분자 담체 바이오필터 결합시스템의 적용)

  • Shin, Shoung Kyu;Song, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.441-447
    • /
    • 2008
  • Volatile organic compounds (VOCs) emitted from various industrial sources commonly consist of biodegradable chemicals and recalcitrant compounds. Therefore, it is not effective to employ a single method to treat such mixtures. In this study, a novel hybrid system coupled with a ultraviolet (UV) photolysis reactor and a biofilter in a series was developed and evaluated using toluene and TCE as model VOCs. When only TCE was applied to the UV reactor, greater than 99% of TCE was degraded and the concentration of soluble byproducts from photo-oxidation reaction increased significantly. However, the toluene and TCE mixture was not effectively degraded by the UV photo-oxidation standalone process. The hybrid system showed high toluene removal efficiencies, and TCE degradation at a low toluene/TCE ratio was improved by UV pretreatment. These findings indicated that the UV photo-oxidation were effective for TCE degradation when the concentration of toluene in the mixture was relatively low. A restively high toluene content in the mixture resulted in an inhibition of TCE degradation. Thus, chemical interactions in both photo-oxidation and biodegradation need to be carefully considered to enhance overall performance of the hybrid system.